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Motivation

» Develop unit-cell analysis as a tool to study property-structure
characteristics of hierarchical textile composites

» Specific Challenges

1. Modeling/meshing of material structure

2. High cost of unit-cell analysis

3. Finite deformation homogenization (conjugacy)
4. Constitutive modeling (finding appropriate forms)
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Material Scale Decompositions
of Stress and Deformation

* Decomposition material/ macro stress/ deformation
t(X)=Z+1 (X); F(X)=®+F (X);

z=(r)=c[rdo; @=(F)= [ Fdo,
(v')=0 (F)=0

 Periodicity of material scale stress and deformation fields:
(X)) =71(X, +n4); F(X|)=F(X, +n4); (I =123)
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Computational Unit-Cell
Homogenization

« Deformation controlled unit-cell analysis
- Apply macro-scale deformation field @
solve for periodic displacement field U, (X) :
such that u(X)=®[X +u, (X) satisfies stress equilibrium O&F =0

 Homogenized macro-scale stress / deformation

r={(1)= % jQST dQ,; @ =(F)= % jQSF dQ,

* Determine homogenized material constitutive model out of macroscopic

stress and deformation relations; y. _ T (®)
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Symmetric and Conjugate
Stress, Strain Measures

« Conjugacy between averaged deformation gradient and averaged
nominal stress was demonstrated by Nemat-Nasser (2000).

<PJ|FIJ> = (Py ><F|J>

* Modified symmetric stress and strain measures
S= <P><|:>'T Macro 2" P-K Stress Tensor:
E= %(<|:>T (F)-1)  Macro Green-Lagrange Strain Tensor

— satisfy conjugacy in strain energy

S.E,= (P)E) = (PE,)=(S,E,)
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Transversely-lsotropic
Hyperelastic Model

« Transversely-lsotropic Hyper-elastic model by Bonet
and Burton (1998)

A: material director

=yl 050, 05) =y v, t
Wi = 3001, =3) —pind + 123 -1)? SEEg
v, =[a+pInd +y(1, =D, -1) —3a(l;-1)
whereI t o ) yam
L =t(C); I,=C:C; I,=det(C)=J; L

I, =ACIA; I, =(AC)QCHA)

and A is material director of aligned fibersin material
configuration
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Estimation of Coefficients
for Aligned Fiber Model

- Coefficients for Bonet and Burton model @& = (A, ,a,[3,7)
« Deformation-controlled homogenization

1S4 (t) - S*(a, 1)
min f < dt
a ; 1 S (1)
where
S(t) IS homogenized stress under k;, strain-controlled case

S'(a,t) s 20 PK stress from proposed model.
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Unit-Cell of Hexagonally
Packed Aligned Fibers

(@ In-planecompression  (b) In-planetension (c) Out-of-plane shear (d) In-plane shear
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Stress-Strain Behavior of
Aligned-Fiber Composite
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Stress-Strain Behavior

of

Aligned-Fiber Composite

F,s=F3, >0, others zero
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Unit Cell of Plain-Weave
Textile Composite
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m The 15th ASCE Engineering Mechanics Division Conference, June 2002 13




Deformed Shapes of
Plain-weave Textile

ST

A

(@) uni-axial compression (b) uni-axial stretch
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Stress-Strain Behavior of

Plain-weave Textile Composite
(In-plane, uni-axial compression)
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Stress-Strain Behavior of

Plain-weave Textile Composite

(In-plane uni-axial stretch)
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Summary

Modeled finite deformation behavior at fiber diameter scale

Performed hyperelastic modeling of aligned fiber and matrix yarns

Computed onset of compression buckling in textile composite

Computed strong tension-stiffening at large stretches
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On-Going Issues

* Progressive material failure in yarns
- fiber-matrix debonding
. fiber breakage
- matrix cracking

« Extended transversely isotropic hyperelastic-damage model for yarns
accounting for failure effects noted above

* Development/calibration of orthotropic hyperelasticity model accounting
for finite deformation effects in textile composite.

* Micro-mechanical modeling of yarn buckling in textile composites with
linearized geometric stiffness and eigenmode analysis.
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