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ABSTRACT

In many circumstances, clothing adversely impaatedn performance while
also providing protection from exposure to a widectrum of external hazards. For a
successful design of protective clothing systeme,dompeting factors, i.e. maximizing
the protection that it provides while minimizingethegative impact that it has on
performance, have to be balanced. However, dtleettack of understanding on the
complex nature of clothing-wearer interactions #rellimitation of available tools and
approaches, the design task has always been ampll In this study, the mechanical
aspect of the clothing-wearer interaction is inigaged. The objective is to realistically
describe clothing with computational models anthen exercise these models to
realistically predict their impact on wearers’ pgrhance for given tasks. With a
knowledge of how clothing impacts human performaitioe clothing can be re-designed
to improve performance.

Computational solid mechanics approaches are adibgie. A mathematical
clothing modeling framework is developed and thetact tractions that clothing exerts
on a weatrer for prescribed motions are determiriBased on these tractions, other
physical quantities are derived to quantify thetdloy's impact. The clothing modeling
framework includes four components: (1) a macr@schdthing/fabric model, which
represents highly flexible fabrics; (2) a mesoséaleic/material model, which captures
the complex material properties of woven fabri@3;g contact computation and collision
detection module, which identifies potential catliis and enforces appropriate contact
constraints; and (4) a digital human model, whiabvigles the definition of the wearer’s
body surface and kinematics description.

In constructing the framework, many challengingiessare identified and
explored, such as robust computational modelsifgriy flexible and unstable systems,

contact computation techniques, efficient collistatection algorithms, and constitutive



modeling of complex fabric properties. Each ofsthessues still remains its own
challenge and the solution adopted may requireongment. However, the novel
framework presented in this work provides a cormstio incorporate these individual
components and has been proved effective in stgdiigm mechanical interactions

between clothing and wearers.
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CHAPER 1
INTRODUCTION

1.1 Motivation

Clothing, besides its aesthetic function, has lbegn used by human beings for
protection against adversities and hazards, susk\ase weather or weapon attacks.
Nowadays, protective clothing has been widely elygdian various applications, ranging
from civilian to military. Special suits have bedesigned for agriculture workers, fire
fighters and astronauts to protect them againshsxe to toxic chemicals, extreme heat
or hazardous radiation etc. Sports gears have d@exioped to protect athletes in
competitive sports activities. Body armors, hebnébots, nuclear, biological and
chemical (NBC) warsuits have been constructed dtept soldiers in various warfare.

While clothing systems provide protection, they edso negatively impact
wearers’ performance in many aspects [9]. Phygio#dly, it has been well established,
e.g. [4-6], that a chemical protective suits duggampermeability and high insulation
properties can significantly constrain the heasigetion and impose heat stress on a
wearer. Mechanically, it has been observed a4-] fhat clothing can restrict wearers’
mobility, dexterity or range-of-motion and inteewith the execution of tasks. Clothing
can also have negative psychological effects onmeveas reported in [7,8]. These
factors in addition to many others not mentionect eteract and affect wearers’
performance in a very complex way [10]. Moreovbe negative impact may lead to
rejection of protection clothing, thus increasihg tisk of injury or casualty.

Consequently, in order to design a good protediothing system, two
competing factors, i.e. maximizing the protectiba tlothing provides while minimizing
the negative impact it has on performance, hawtbalanced. Due to the lack of
understanding on the complex nature of clothingreemteraction and the limitation of

available tools and approaches, however, the déaghas always been a challenge.



Many factors considered in clothing-wearer intdoacturrently adopt subjective
measures. The vague definitions of these meaom¢she quantification and
comparison of the factors and obscure the undelstgof the interactions between
clothing and wearers. Most approaches and tootsmily adopted are based on
experimental studies, which have been effectividentifying the factors yet provide
limited help in understanding them as it is diffido isolate the huge volume of
interacting factors and to conduct experiments tigsttall the possibilities. For example,
an important factor considered in the clothing-veeamteraction is fit and sizing, which
is usually measured by visual identification of gteess regions, where fabrics are
stretched and are thus considered as restrictidgheowearer’'s motion. The visual
identification can be subjective and inconclusiye addition, for physical try-on,
prototyping and subjects are needed, which camiEeconsuming and expensive
considering the large anthropometry variations @akers and the iterative nature of a
design cycle.

It is thus instrumental to construct an analysasnfework, which can quantify the
effects a given design may have on the wearergdpeance and can thus lead to better
understanding of the clothing-wearer interactioobgm. Based on the analysis
framework, a design tool can be developed to tatdithe design process for protective
clothing. This very idea motivated the researaspnted in this work, where a

mathematical clothing modeling framework is invgated.

1.2 Objectives and organization

Clothing impacts a wearer in various ways and #uotofs can be physiological,
mechanical and psychological etc. This work isibymeans to include all the factors.
Instead, only the mechanical factors are consideeeel. Two notations justify the
choice: (1) the mechanical effects are most likele related to objective measures,

eliminating the uncertainty due to the subjectiv({8) the mechanical effects constitute



the fundamental component of the clothing-wearraction, on which other factors
depend. For example, the heat dissipation featiuctothing is closely related to the air
space between the clothing and the wearer andhttvemation is determined by the
mechanical interaction.

In this work, a computational framework for clotbimodeling is constructed and
the mechanical interactions between clothing onrareaare investigated. Computational
models are developed for both clothing and weaedstheir interaction are calculated
using computational solid mechanics approache® ni&n focus of the study is to
explore the construction of the entire framewotkeathan to develop novel techniques
to solve the individual mechanics problems involv&le to this reason, some mature
methods in computational solid mechanics are dyegplied here while some are
developed if they are not available.

The quantity studied here is the contact forcesaations clothing exerts on a
wearer. Given the wearer’'s motion, the contaatdsrare determined by considering the
contact constraints between the cloth and the wedredy surface. Based on the
contact forces, other physical quantities are @eriand they are then interpreted as the
impacts clothing has on the wearer for the givetiono With this scenario, the clothing
modeling framework is decomposed into the followiogr components: (1) a
macroscale clothing/fabric model, which basicadlgresents a garment under
macroscopic loading, such as a given posture tla@eveindertakes; (2) a mesoscale
fabric/material model, which captures the compleatarial properties of woven fabrics;
(3) a contact computation and collision detectiadale, which identifies potential
collision and enforces appropriate contact constsaand (4) a digital human model,
which provides the definition of the wearer’s bailyface and kinematics description.

A multiscale terminology is adopted in the discarssef fabric modeling. This is
due to the complex hierarchical constituents ofwvey length scales observed in woven

fabrics. On macroscale, fabrics are perceivetiiaglates or membranes. On



mesoscale, discontinuous yarn structures are abdend the interactions of the
interwoven yarns determine the macroscopic matpr@erties of fabrics. On
microscale, each yarn is a fiber bundle and theawebhs of the bundle govern the overall
properties of a yarn. A schematic of the multisdakrarchy view of woven fabrics is
shown in Fig.1. In this work, fabric modeling dretmacroscale and the mesoscale are
investigated and computational homogenization teglas are applied to relate the
mesoscale yarn interactions to the macroscalecfaboperties. While the microscale

problem of the fiber bundles is not covered here.

Macroscale garment and fabrics

Mesoscale yarn structures

Microscale fiber bundles

Figure 1: A schematic view of multiscale modelifgwoven fabrics



The organization of the paper is as follows: Irafter 2, the macroscale
clothing/fabric modeling is discussed. Previousesrch works on the subject are first
reviewed and a fabric model based on geometricalhfinear shell finite element
formulation is proposed. In Chapter 3, contact potation and collision detection
techniques are summarized and two algorithms ansetbto solve contact problems on
the macroscale and the mesoscale, respectivelghapter 4, the complexities in fabric
properties and their constitutive modeling are @nésd. Computational homogenization
and unit cell analysis techniques for mesoscaledebaterial modeling are proposed. In
Chapter 5, the digital human model developed farstudy is briefly introduced and the
clothing-wearer interaction studies based on tlopgsed clothing and human model are
presented. Finally, the paper is summarized inp@&h& and research visions are shared

as well.



CHAPTER 2
MACROSCALE FABRIC MODELING

As highly flexible media, clothing fabrics developmplex configurations with
vague wrinkling patterns when draped onto objectsumnan bodies. Due to the small
fabric thickness, these wrinkling configurations &ery unstable and change
responsively to tiny perturbations. The vague abdant fabric behavior, though quite
appealing to the eyes of artists and fashion dessgfig.2), poses a great challenge to
mathematical modeling of clothing mechanics. Is thapter, numerical models that can

realistically represent the complex fabric featare studied.

Figure 2: Study of Madonna and Child with St Aniyelleonardo da Vinci

A major momentum in cloth/fabric modeling reseachccredited to computer
graphics community as movie and game industriettoyeate realistic visual effects and
animations related to clothing. The approach pnevails in this area is particle-based
method, which treats cloth as a dynamic system csegbof interacting mass points or

particles and solves cloth animations by time irdggn of the system. Simple as itis,



the particle-based method does shed light on thenes of cloth modeling, i.e. evolution
of a dynamic system, and it is capable of genagatalistic (even stunning) animations
as shown in Fig.3. However, the method falls shorelating a model to real fabric
properties. A general practice an animator adispits tweak the parameters of a particle

model until the animation looks right visually.

Figure 3: A cloth drape simulation by Breen usinggaticle model

Apart from particle-based method, another typeppir@ach treats fabric as a
deformable surface. Local equilibrium of a conting medium is usually considered and
used as a point of depart. Numerical models atigeatefollowing standard
computational techniques, such as finite differemeg¢hods of finite element methods. A
typical application of this approach, mostly camiried by textile and mechanical

engineers, is to study the effects of fabric matgroperties on its drape configurations.



In their models, fabric drape is formulated as quildrium problem and solved with
finite element methods, which allows incorporatadrvarious material models. The
surface-based approach is generally more rigormasmathematical and mechanical
sense but tends to be more complex than the pakiaded method.

In this work, a thorough study on both approackenducted. A representative
particle model is implemented first. And a findlement model is formulated and
constructed as well. A comparison of the two apphes is provided and suggestions on

macroscale fabric modeling are presented.

2.1 Previous works on clothing simulation

2.1.1 Particle-based methods

2.1.1.1 Mass-spring models

In 1995, Provot [11] proposed a mass-spring clotld@h In his model, fabrics
were modeled as an array of mass particles intenacied by linear springs of three
different types, structural, shear and flexion sgsi characterizing the stretching, in-plane
shear and bending deformation of fabrics respdgtivas illustrated in Fig.4, structural
springs connect a particle with its direct neiglsbaiong the two perpendicular axes,
which are usually aligned with warp and weft yamections, while shear springs
connect a particle with its neighbors in the diagahrections. Flexion springs are also
along the two perpendicular yarn axes but eachexsrevery other particles.

Since the interaction between two inter-connectatigles was defined as a
linear spring, given the positions of two particleayi andj, the forces exerted on them

can be computed as

F :de|—Io)ﬁ andF, :—k0d|—|o)ﬁ, (2.1)



whered = x; —X; is the relative position vector of the two partectndl, andk denote

the free length and stiffness of the spring respelgt

weft weft weft

LN R e o

7

¢ RAAN warp ¢ o

o o o o—o—

Structural springs Shear springs warp

e O o o
e o e O

Flexion springs

Figure 4: Provot’s mass-spring model

The evolution of the system was obtained by the fimegration of the particle
accelerationsa, = Y F, /m , wherem denotes the mass of parti¢land Y F; the sum
of total forces applied on it. An explicit timet@gration scheme was adopted, which is

summarized as follows

alt +at)= rinz F(t);
v(t +At) = v(t) + At &t + At); . (2.2)
x(t +At) = x(t) + At Tt + At).

Since the step size of an explicit integrationastomlled by the stiffness of the system,
relatively compliant springs were used, which resiin unrealistic overstretch in some
springs. To address this issue, a heuristic metrasiproposed by Provot to adjust the

positions of the particles associated with the sivetched springs.
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An extension of the mass-spring model was propbgedhoi and Ko [12]. They
considered the buckling effect of fabrics and ideld it in the formulation of the bending
springs. A buckled segment of fabric of lengthubjected to a compressive |davas
assumed to be pinned on both ends as shown in kigiéh yields the following

equilibrium equation

K,k +Py=0, (2.3)

wherek, is the bending rigidity« the curvature ang denotes the deflection. Numerical
solutions of this differential equation were found different load levels. The strain

energy due to bending, which in is general defiagd

L
E:ijMde, (2.4)
20

can be obtained by integrating the curvature anchemt in terms of the arc-length of the

spring,s. In doing this, the length of the fabric segme&at assumed to remain the same
before and after buckle &s In stead of using the numerical solution of Baura(2.3)

for the integration, the curvaturewas assumed to be a constant for simplicity and the

integration became

=%kbu(2. 2.5)

Choi and Ko expressed the curvature in terms ofathgth of a bending spring as

_2 o afld
K—Lsmc (Lj (2.6)

wheresinc(x) =sin(x)/x. This relationship can be derived by noticing the radius

,0:L and p = |d| (2.7)
20 2sing’ '
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which yields
d .
|d _sing 2.8)
L 7
and thus
d
6= sinc’1(|—j . (2.9)
L
The spring force, which is the derivative of theti@g energy in Equation (2.5), was
derived as
fi = kbLKd—KE
dld] [d|

(2.10)

-
H,

which is a nonlinear force representing the conmgpoegbuckling behavior of fabrics.

=k Kz(cos——sinc—j
=k, KL KL
2 2

Choi and Ko’s work provides some insight into thggical meaning of the
flexion/bending spring used in a mass-spring modlefact, it is more appropriate to
name it as a compression spring, since the spiregtly models the buckling response
of fabrics subjected to compressive loading. Haveas the buckling is essentially a
deformation controlled by bending, the spring soalepresentative of the bending
behavior of fabrics.

Simple as they are, mass-spring models are capépleducing visually
convincing animations and have been widely adoppt@dmputer graphics community
for clothing simulation. However, since the modais not related to any real fabric
properties, they cannot simulate a specific fatype without modifications and the

mechanical response they predict may not be rigalistoreover, for complicated
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geometry, if the structural springs are not alignth the warp and weft directions,

unrealistic results are observed.

Figure 5: Fabric buckling model used by Choi and Ko

2.1.1.2 Particle models

Instead of using simple linear elastic springs, soesearchers constructed more
sophisticated particle-based fabric models. Magigldby Hearle [15]'s comments on the
inadequacy of traditional continuum theory for fabnodeling, Breen et al. [13,14]
proposed a discrete fabric model based on intexggiarticles. They founded their work
“on the premise that by modeling the low-level stames of a material and
computationally aggregating their interactions reor macroscopic behavior will
emerge”. With their approach, a piece of fabrimizdeled as an array of particles
conceptually representing the crossing points opvead weft yarns in plain weave
fabric. For computation feasibility, a particletre model actually represents a fabric
patch with dimensions determined by the discrabmatesolution and the interactions
between particles are the aggregation of thosed®stihe represented patches.

Four basic mechanical interactions between pasticle. repulsion, stretching,
bending and trellising (in-plane shear), were medddy the definition of energy

functions and the strain energy of particlgas the summed as

Ui =U e tU green, TUbend, TU aiis - (2.11)

repel;
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The repulsion energy ., was an artificial energy designed to prevent seéfrsection

of the cloth and was calculated by summing ovepaiticles as
U repel; = z R(rij ) ) (212)
j#i
with n denoting the total number of particles in the m@ohel functionR defined as
5
- <
R(r) ={C°[(a il rso (2.13)
0, r>o
wherer denoted the distance between two particlesartie nominal distance between

the two. The stretching energly, ., was defined between partidland its four

neighbors along the yarn directions as

U stretch, = Z S(rij ) ’ (214)

JON;
where N, was the set of the four neighbors and funcavas approximated by
s(r) 0, r<o (2.15)
r)= : :
Clr-o)al, r>o
C, in both Equation (2.13) and (2.15) was a stiffnesmsmeter. According to Breen, the
combination of these two energy functions shoulzh&train each particle tightly to the

nominal distances from each of its four-connected neighbors” andeparation force”

between neighboring particles can be derived as

F(r) =

a(R+S):{—Co(4r+U)(r_0)4/021 r<o (2.16)

or 5C, (r -o)*/o®, r>o
From this equation, one may notice that in additmits original purpose, preventing
cloth from self-intersection, the repulsion eneago describes the compression behavior
of fabric yarns. However, this may lead to an agulty regarding the choice . For

compressioro is the free distance between two neighboring gagj which depends on
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the grid spacing of discretization resolution, wHir repulsiono is the minimum
distance keeping clothing from self-contact. Thig® quantities are different in
magnitudes and need to be distinguished.

Noticing that “the bending and trellising propest@re significant contributors to
the overall draping behavior of cloth”, Breen etfafmulated the energy functions for
bending and trellising based on experimental dataived from Kawabata Evaluation
System for Fabrics (KES-F) [16]. The bending egyexgparticle was defined by

U peng, = z B(G,) . (2.17)

jOM;

where M, was the set of six angles formed by the segmamisecting particle and its
eight nearest neighbors along the yarn directibitgs§a). Assume that each particle
represents @ x g fabric patch, the bending energy due to the bendimgled made by

two segments in either yarn direction was evaluated

B=—o0", (2.18)

whereM and x denoted moment and curvature in the bending doe@nd the
relationshipM =M («) was obtained from Kawabata tests . For constanature,x
was related to the bending angleshown in Fig.6a by

K= zco{gj : (2.19)

g 2

Trellising deformation at a particle was characiedli by the shear angte shown in

Fig.6b. The trellising energy function at particleas defined as

Utre:llis1 = ZT((DU) ' (220)

oK,
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where K, was the set of four neighbors of partickdong the yarn directions. Functidn
was derived by considering the work performed higeal force in a Kawabata shear

test and it was computed as

T(¢) = [ Fl cosgtlg, (2.21)

whereF and ¢ denoted the measured shear force and angle resggatihile| was the
width of the Kawabata shear test specimen. Siach patrticle representsax g fabric

patch, Equation (2.21) was scaled by a ratio ofilea of the patch to the area of actual

Kawabata shear test specimen.

g

g
+—t SANN
O—\?/—O
7
Particles associated with bending Bending angled
(a) Bending
¢
/2
Particles associated with trellising Trellising angleg
(b) Trellising

Figure 6: Breen’s energy function definitions
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Based on the particle model, the draping charatiesiof fabrics were predicted
by minimizing the total energy in the particle gstand the results compared favorable
with experimental validations. The most signifitaantribution of this model is that the
mechanical properties of a specific fabric type lbanncluded through the formulation of
the energy functions, which make it possible toudate the macro-scale behaviors of
different fabric types. As the internal forcesvbe¢n particles can be derived from the
definitions of the energy functions, the model barreformulated as a dynamic problem
and the evolution of the particle system can theisdimputed. The reformulated
dynamic particle-based model can be viewed as ergkred mass-spring model with
nonlinear internal forces.

Motivated by Breen et al.’s work, Eberhardt ef&¥] proposed a model to
simulate the dynamics of fabric draping. Like Bresemodel, a rectangular grid aligned
with the warp and weft directions of cloth was aolpwith each grid point representing

a particle, whose trajectory is governed by theraage equation

g _* 2.22
dt ov, 0x, (222)

wherex; and v, denote the position and velocity of particiespectively. The Lagrange

function of the particle system was evaluated by

n-1 n-1 n-1 n-1 n-1
L :zEkini _(zo EPOti +2Eti +;E3 + = Eblj’ (223)

i=0 i=0 i=

where E;, and E , are the kinetic energy and gravitational poterdfglarticlei

pot;
respectively andE, , E, and E, strain energies corresponding to three typestefnal
forces, tension/compression, shearing and bending.

To construct accurate energy functions, Kawabape®xental data was used.
Piecewise linear functions were used to approxirttegeriginal Kawabata curves and

two parametersC, the slope of the curve ard, the intercept of the curve with x-axis,
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were retrieved for each linear approximation segm&ased on the two parameters, a
guadratic form of strain energy for the approxindateighborhood was constructed.

The bending energy at a particle was assumed &ofinection of the two bending
angles about the two yarn directions as showngr/Biand it was given as

E, =

1c W -7-nJ 2.24
25 Y —m=h, . (2.24)
The shearing energy at a particle was considerad@sction of the four shear angles

formed by the gridlines connecting itself and dsifdirectly connected neighbors

(Fig.7b) and was defined as

41 T ?
E. = iZ:l“ECS (¢i _E_hSJ : (2.25)
Py P
¥, 1
Py ey P psOﬁQ%/. >

Po ¢3KF’5 )
\p./ \p./
(a) Bending (b) Shear

Figure 7: Eberhardt’s energy function definitions

Likewise, the tension/compression energy was déefasefollows

4

1 .
ZECi,tlﬂpo—pil—di—hti)s, if oo —pi| 2,
E‘ _]i=1

= . (2.26)
ZECi,tZQpO_pi|_di _hri) s If|p0_pi|<di
=
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wherep, andp, denote the position of a particle and one ofats heighbors
respectively and, is the free distance between them. Differentesifior the

parameters C andwere stored for each linear approximation segroktite Kawabata
curves and the right set was picked given the detion and the history. Then the
Lagrange function was differentiated symbolicalhgldahe resulting differential equations
were solved by a Runge-Kutta method with adaptiep-size control. With this

approach, the hysteresis of fabrics was included.
2.1.2 Surface-based methods

2.1.2.1 Nonlinear elastic surface models

In order to create animations of deformable boaiemputer graphics,
Terzopoulos et al. [18] introduced a physical-basedel by applying the principles of
elasticity and differential geometry. They stantgth Lagrange equation, which governs

the motion of a deformable body

d( or or  0g(r)
— |+ y—+—2=1f(r,1), 2.27
at[/”’atJ Yoty 0 (2.27)

wherer (a,t )s the position of a material poiatat time t, z(a )the mass density at the
point, y(a) the damping density, arfdr,t the external forces applied. The functional
g(r) is the strain energy function characterizing tlastec deformation of the object.

For a surface, the strain energy function was asgumbe

£0) = [(7,(G, -G + &, (B, - BY)? Joa,da, (2.28)
Q
where
2
g =9 g-ppd’ (2.29)

" "9 oa, ' 0a,0a,
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andn denotes the unit surface normal. The deformatieasure$ andB are the first
and second fundamental forms of surfaces and herscript O indicates the quantities

associated with the reference configuration. Tihenconservative forces, i.6s/J , are

given by
0 or 0? o°r
—_ % a9 | ] , 2.30
e(r) da (a” an 0a,0a, (ﬂ” aa,.aaj] ( )
where
ay =11 (Gii _Gi?)
By =¢; (Bij - Bi?)

are constitutive functions describing the elastmperties of the material. By changing
n; and ¢, different materials, such as rubber, paper, natdlicloth, were modeled.
For cloth,77; was set to large values afjdto zero, indicating strong resistance to
stretching and compliance to bending. EquatioB7/(Rtogether with (2.30) was
discretized by finite difference methods over autagmesh and a set of second-order

ordinary differential equations as

o°r or
M—+C—+K(r)r =f, 2.31
e P (r) (2.31)

was obtained and solved by implicit time integnatio

Terzopoulos et al. also proposed the strain enfergstions for curves and solids
based on the deformation measures derived frorditfezential geometry. Since these
deformation measures are invariant under rigid bmdyion, large deformation was
properly modeled and realistic simulations wereoigd. In one of their later work,
Terzopoulos and Fleischer [18] even included vissieity, plasticity and fracture into

their model, enabling a complete physical-basediksition framework for computer
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graphics. Terzopoulos’s general model was lateptetl and extended by Thalman et al.

[20] in cloth simulation.

2.1.2.2 Finite element models

In 1991, Collier et al [21] showed that fabric deagan be predicted using a
nonlinear shell finite element model. A circulaege of cotton plain-weave fabric was
modeled and the drape predicted by the model wapared with experimental results of
drape test [22, 23]. A four-node quadrilateral-fiaell element, which combines a
membrane element with a plate-bending elementagdapted and Green strain measure
was used. Two constitutive models, isotropic artdatropic linear elasticity were tested
and it was found out that the orthotropic one iserappropriate for fabric modeling.
Three input parameters were needed for the ortpictraodel, the tensile moduli in two
yarn family directions, which were measured usitgSKF system, and the Poisson’s
ratio, for which literature values were used. Ateresting effect was reported that the
deformed shape was sensitive to the Poisson’s ratio

In the mid 90s, Chen and Govindaraj [24, 25] prepos fabric model based on
nine-node degenerated shell elements. The camgtitielationship adopted was given

by the following form
o 0 |l&
1 _ Qll Q12 1 0_4 _ Q44 0 ‘94 2 2
0,0=1Q, Qp 0 [{& and | o J (2.32)
05 Q55 ‘95
O, 0 0 Qgll&s

where g, and ¢, denote the stress and strain respectively@ndre elastic constants

deduced from the plane stress assumption, whichaga

E
Q11= E1 Qﬂ:%,Qﬂ:l—Z QGGZGlZ’Q44:GZS1Q55=GlS'

1-v?’ —-p?’
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where E; is Young’s modulus in the warp directioB, is Young’s modulus in the weft
direction, G,,,G,;and G, are shear modulus andis Poisson’s ratio. Such a
constitutive model can be categorized as orthatrbpear elasticity without
differentiating Poisson’s ratios for different maaé directions. The Young’s moduli and
the shear moduli were obtained by KES-F and thedeois ratio was determined from
tests using an Instron tensile tester. Nonlingairsmeasures defined in local curvilinear
coordinate frames were adopted and a Newton-Raphstimod was used to solve the
nonlinear equations. Fabric drape shapes predistélde model were compared with the
actual experiment measurements and good agreemergbserved. In addition, Chen
and Govindaraj [25] did some parametric studiethefeffects of various material
properties on the drape deformation. It was fotlad
= Orthotropy in drape deformation were affected gy ttiickness and shear

modulus. For low shear modulus or small thickn#esmodel didn’t

exhibit orthotropic drape shapes even though amvipat material

properties were used.

= Poisson’s ratio didn't affect the drape shape, Winccontrary to what has

been reported by Collier et al. [18].
Moreover, they presented an example showing thahys and shear moduli retrieved
in the low strain range of Kawabata experiment dataerated drape shape very close to
actual one, which indicated that for fabric drapedr elastic model is an acceptable
assumption.

Around the same time, Gan, Ly and Steven [26] edported a nonlinear shell
fabric model. They used the curved degeneratetledbenent introduced by Bathe in
[27]. Green strain and Piola-Kirchhoff stress wesed to describe the strains and
stresses and the problem was solved using Newtphg®a method. They assumed that
fabrics are linearly elastic and orthotropic. &t of relating the bending stiffness of

fabrics to the Young’s moduli based on linear ste@ssumption as Chen and Govindaraj
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[24, 25] did, they assumed that fabrics have inddpat bending and tensile stiffness and
experimental data of fabric bending rigidity obtdnfrom KES-F system were used. In
order to eliminate locking, reduced integrationhagero energy mode control was
applied. Two examples were presented, one simglatvo-dimensional cantilever
bending and the other simulating three-dimensidregbe. The simulation results were
checked against experimental measurements andagpedment was found.

Deviating from traditional degenerated shell eletaghBischen [28] proposed a
fabric model based on Simo’s [29-31] geometricakgct shell theory. Isotropic elastic
material model with a nonlinear moment/curvatutatrenship derived from KES-F
system was used and arc-length controlled soldéonnique was implemented to treat
the instability due to fabric buckling. The corthetween fabrics and rigid surfaces was
considered and the contact constraint was enfdygedpenalty method. Examples such

as fabric drape and handing were presented.

2.2 A macroscale fabric model using particle method

To understand the detail of fabric modeling usiag¢iple-based methods, the
mass-spring fabric model proposed by Provot [11islemented here. With this model,
a piece of fabric is represented as a networkefthhee types of springs, structural, shear
and flexion. The dynamics of the fabric, whiclessentially the trajectory of each mass
point in the system, is determined by the forwanteEtime integration. The
implementation is straightforward and visually rei@éd fabric animations are created with
the model. Fig.8 shows a snapshot of a drapinglaion of a square fabric piece
pinned at two corners on an ellipsoid.

To achieve visual realism with the model, a critetap is to tweak the stiffness
parameters for the springs. As the springs areigotously defined on the basis of
mechanics, it is not straightforward to relatespeng stiffness to actual material

properties of fabrics. As a result, visual inspmtis heavily relied upon when these
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parameters are to be determined. Another obsernvabout the mass-spring model is its
mesh dependency. When mesh is refined, the sgtiiifigess parameters need to be
modified. And when irregular mesh is employedeesglly when structural springs are
not orthogonal, the model does not behave propdrhese limitations are due to the lack
of explicit definition on the discretization scheméich relates an actual fabric with a
discrete model. Tis weakness motivated the dewadop of a shell finite element

formulation presented in the following.

Figure 8: Fabric drape simulation using Provot'ssgpring model

2.3 A macroscale fabric model based on shell foatmmn

In this section, a macroscale fabric modeling framor based on nonlinear shell
finite formulation is constructed. The major comchere is to construct a computational
fabric model, which has rigorous specification ba spatial discretization and allows
straightforward incorporation of realistic matenabperties.

A shell finite element with fully nonlinear kinenieg description is developed
and consistent linearization is conducted. Boéhghasi-static and the dynamic
formulation are supported and the solution algarghbased on Newmark’s methods are

presented. St. Venant material model is considieege by assuming a small strain in
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fabrics under normal wearing conditions. More d&ssons on fabric material properties

are presented in Chapter 3.

2.3.1 Geometrically nonlinear shell formulation

2.3.1.1 Problem statement

Total Lagrangian formulation is adopted and theegoing equations are
summarized as follows:
Ry.s t o0 = ol inQ,
P,N; =7 on rt? (2.33)
u =0 onl

where Q, is the reference configuration amyj is the first Piola-Kirchhoff stress tensor.
. andl; are the parts of the boundad§2, where the tractior® and displacemert,
are prescribed.N, is the outward normal to the boundary in the exiee configuration.
With an admissible variatiodu , the weak form is obtained as

[ ou,R,dQ, = [ dupdQ,+ [ Sutdr o [ du pdidQ, (2.34)

Qo Qo y Qo
For quasi-static problems, the last term due tdiedas eliminated and the weak form is

written as

[ 8u.,P,dQ, = [ dupddQ,+ [ Sutdr,. (2.35)
Qo Qg ry
The left-hand side of the preceding is the viriuatk done by the internal force, which is

int

denoted a , and it could be verified that

W™ = [ 5F,R,dQ, = [ JE,;S,dQ,, (2.36)
Qo Qo

where F; = , is the deformation gradienE,; = (Fkl Fo — 9, )/2 is the Green strain

tensor; andS, = F,'P, is the second Piola-Kirchhoff stress tensor.
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2.3.1.2 Geometry and kinematics

The geometrical description of the shell elemelio¥es Hughes’s work [32].
The initial global position vector of a materialip’o({,q,() in a shell element is defined

by the following relation:

X(E7,4) = 2 NAEDK ,+ Y NAEMZL Q)X 1 (2.37)

where X , is the initial position vector of nodg )A<A is the fiber director emanating from
nodeA in the fiber directionz,(¢) is a thickness functionl\ , (£,/7) denotes a two-
dimensional shape function associated with nddadnen is the number of element
nodes. Given the coordinates of the top and bostierfaces of the shell along each nodal
fiber, i.e. X and X, and a paramete;?D[—]ﬁl] designating the natural coordinate of
the reference surface, in which shell nodes lo¢htequantities in Equation (2.37) can be

determined as follows

o= 2=+ 202

%, = (=X )X - X

2,¢)= 50+ )5+ 500z 239)
2 =2 (-2 )X - x|

z; = —%(1+Z]x; -X;|

where

denotes the Euclidean norm. For example, to ahovddle surface of the
shell as reference, one séts= 0 and the nodal positioX , = (X; + X;)/Z while the
thickness functiorz, (¢) = ¢|X ; = X3/ /2 with ¢ O [-1,+1]. The construct is sketched in
Figure 2-7. At each node a local coordinate sys(te,ﬂmegz,e,f\g), named fiber
coordinate system, is constructed and nodal ratésispecified with respect to the
frame. In the initial configuratioe}, is chosen to coincide with the fiber directi&rk

and the other two legs are constructed using tpaighm given in [32].
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Figure 9: Geometrical description of the shell edem

The updated configuration of the shell is defined isimilar manner

K(ENQ) = 3 NAEMRs+ >N EMZA R, (2:39)

whereX ,, and X, denote the current nodal position and fiber o&an, respectively.

For finite deformation, these nodal quantitiesratated to the initial ones as

X, =X, +U, andX, =R[X,, (2.40)
whereu, denotes the nodal translation aRdis an orthogonal matrix describing a finite
rotation of the nodal fiber director. Suppose weét, is obtained by rotatingA( A by an
angle @ about an axis defined by unit vector According to Euler’s theorem, one has

following relation

R, =X, +sindnxX, +(1-cosB)nx(nxX,), (2.41)
or
%, :)?A+S'299><5<A+—1_;SS€BX(GXXA),
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where® =8n =(6,,6,,6,)" is the axial vector of the rotation. By definingleew-

symmetric tensor such théitx XA =Q(0) DA(A, the rotation matrix can be written as

R(0) = +S'”5g(e)+1'cgs‘992(e), (2.42)
g g
with
0o -6, 6,
Q0)=| 8, 0 -6,|andé=(00)".
-6, 6 O

In shell kinematics, nodal rotations are permitibdut the first two axes of the fiber
basis (e.f , =8,.el, +8..e.,), which excludes the drilling degree of freedon©OE)

aboute},, and the new orientation of fiber directﬁrA is thus given by
%,=X, +¥(@{Zej_\l -8/e!, )+ (1-cosel,. (2.43)

The fiber director tip, i.eli, =X, =X ,, is

0, = 200 (0lel, ~0Lela )+ (i-costlel,

which recovers the infinitesimal rotation casg=6,,e,, —6,e5, given in [32] when
6 - 0.

To summarize, according to (2.39) and(2.40), thedl glonfiguration is a
nonlinear function of nodal translatian, and rotation ,. By defining a nodal

displacement vectod , = (UA,BA), it can be written as

x=x(dp) =Y Nu(X, +T,)+ Y N, ZR(O,)X, . (2.44)
A=l A=1

2.3.1.3 Linearized kinematics

In general, Equation (2.34) and (2.35) are nonlirea are solved iteratively

using Newton’s method. In the following, the stgdbmetry in (2.44) is linearized in the
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context of the solution method. Suppose thateh ¢onfiguration has been obtained and

is given as

X' :x(d;)::Z:NA(YA+U;)+2NAzAR(e;)§<A. (2.45)

An updated configuration = x(dA) as given in (2.44) can be linearized abrutas

follows

L[x]y, =x" +4x, (2.46)
where Ax is the directional derivative afalong an incremental nodal displacement

Ad, =(AT,,A0,) and it is computed as

AX :%[x(d*A + sAdA)]

=0

_ZN AuA+ZN z !aaA

(2.47)

A=1

Ne, | X,
0,=6

A nodal rotation is usually specified with respexthe local nodal fiber basis
el.(i=123) as0, =0/ el +0)el,. Asthe fiber basis in general differs from the
global basise,, (i = 1.23), a transformation is defined as

T, =el, ). (2.48)
The directional derivative d&® in (2.47) is thus expanded as follows

a—RAeA X, = R’f’ NG/ X
00, 06,

= (T aR;m T, JAH,L,T” X! (@=12) (2.49)
06!

=T, aR"“ " A6,
aeAa

where nodal indeA is not summed and
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0,,6,,c088 _0,06,,sin0
2 03
R o _| (65fcoss (6s,)sing
WXA - = 92 - 93 (250)
" _8,sind
2
(65,) cosp  (64) sine
2 3
f o f Hf f Hf ;
OR' o _| 6Hy0s,c088  6,06,,5n8
— X, = - +
06, 6? 6°
6,,sind
e
Two auxiliary vectorsDi2, (o = 12) can be defined as follows
A ORL, o
Du, =T, YR (A not summed), (2.51)
Aa

which can be interpreted as the linearized disphece of fiber director tip. According
to (2.50) and (2.48), the vectoBi” depend on both the reference nodal fiber basis

and the rotation angl@,,. For an infinitesimal rotation, i.&,, — @ndé,, - 0

fo. fo.
g%x,fﬁ(o -1 0) andg%xjﬁ(l 0 o),
Al A2

which yieldsDG;' = -e}, and DG) =e}, .
The linearized change of configuration given in &pn (2.47) can thus be

written as
A =Y N,AU, +> N,z,DU;A6,, . (2.52)
A=1 A=l

By introducing a generalized interpolation matkxX', the equation above can be written
as follows
Ax=H"Md,, (2.53)

where
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AU,
AT, N, 0 O N,zDG; N,z,DGs
Ad, =<AU,,r andH*=| 0 N, O N,zD{, N,z,DG |,
A6, 0 0 N, N,zD(5; N,z,D0
NG,
or in a component form as
Ax =HMAd,,, (i=1,2,3angr= 1,2,k (2.54)

AsDU(/ is a nonlinear function d ,, the interpolation is deformation dependant, which
is different from that of a continuum element. Magiation of shell configuration due to

a virtual nodal displacement is computed in a ginhanner as
ox =H™od,, . (2.55)
And the variation of the deformation gradient armééh Lagrangian strain are
o =0, (2.56)
and
&, =, Fo +Fe.,)/2, (2.57)

respectively. The linearized variational strain is

ASE,, = (0%, A%, +A%, 0%, ;) /2. (2.58)

2.3.1.4 Force vectors and tangential matrices

In Newton’s iteration, the internal virtual workfded in (2.36) is linearized at

the current trial solutior” as

L[ ow™ |

. = | 0E,S,dQ, + [ AJE,;S,dQ, + [ JE,,AS,dQ,. (2.59)
Q, Q,

Q
Due to the symmetry of the second Piola-Kirchhto#ss, the first term in (2.59) can be

written as

[ 6E,,8,dQ, = dd,, [ BY'S,dQ,,

Qo Qo
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where B}' = H'F,, , and the internal force is obtained as

far = [ BY'S,dQ,. (2.60)
Qo
The second term in Equation (2.59) is expandedl&sifs

[ B3E,S,dQ, = [ o%,8%,;S,dQ,
QO QO

=43d,, [j Hﬁ{HEﬁSJdQO}AdBﬂ

Qo

which yields the geometric stiffness

Kgeu = | HOHXS,dQ, . (2.61)

Q0
Assume that the material response
ASJ = DIJKL : AEKL ’ (262)

whereD is the tangent material tensor, the last term &9qRis expanded as follows

j oE,;AS,dQ, = J- (5Xm,| Fm])DIJKL (AXn,K FnL)dQO
Q Q

= 5%( [ B Dy BEfdQO}AdB,,

Qo

which yields the material stiffness

AxBu

K = | B Dy BEAQ, . (2.63)
Qo

The external force vector is contributed by theybfmatce and applied surface tractions,
which can be written as
for = [ HMpdQy + [ HATOdr . (2.64)
Q, rg
Assuming that the external load is independenhefdeformation, linearization of the

external force is not performed.
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The inertial term in Equation (2.34) is complex dae¢he shell kinematics.
Recall that the reference and the current configura of a shell element are given by

(2.37) and (2.39), respectively. The displacenetitus
U=x-X=> NuU,+> N,zZRX,,
A=l A=1

and the acceleration becomes

R SRV L OR. . 0°R.)\ o
u=ZNAuA+ZNAzA(a—HG+H o7 ej[xA, (2.65)
A=1 A=1

The last term of (2.65) is proportional to the gguaf the angular velocity, which
complicates the solution algorithm, and is usua#tglected. The acceleration is then
interpolated from nodal quantities based on theesaatation for linearized displacement

given in (2.54) and it is written in componentrfoas

i, =HMAd,,, (2.66)
The inertial term in the weak form (2.34) becomes
[ 8upidQ, = ad,, | [ pHMHMdQ, (Ad,,,
Qp Q
which yields the mass matrix
Mae, = [ BHMHHAQ, . (2.67)
Q

As the generalized interpolation functiokls™ are deformation dependant, so is the
mass matrix. Consistent linearization of this tésmecessary when a solution algorithm,
e.g. Newmark method, is considered, and the dewedopis presented in the solution
algorithm section.

The forces and stiffness can be organized intcovertd matrix notations and

assembled to form a global linear equation systethe following form

fr(d )+K(d)md =t -m @, (2.68)
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whered” denotes the current trial solutioAd is the incremental solution to be
determinedid is nodal acceleration, which is dependant uporspieeific time

integration scheme; aridl is the tangential stiffness, which includes bgglometrical

and material contribution from (2.61) and (2.68)pr static or quasi-static problems, the

inertia term is neglected and the equation systecorines

f7(d")+K (d")ad = f <. (2.69)

2.3.1.5 Constitutive model

The material properties of fabrics are extremeliyplex. Nonlinearity,
anisotropy and hysteresis are generally observedreamy factors, such as the
constituent yarn properties, the weave pattermsgédometry of yarn structures and the
interactions of interwoven yarns, affect the oVeraterial properties of fabrics. A
detailed study on this subject is presented in @ap In this chapter, the constitutive
model is considered in the context of the shelnfialation and some simplification
assumptions are introduced.

Most shell theories adopt the so-called plane stresadition, which assumes that
the stress normal to a lamina surface, which isddfby fixing ¢ in the interpolation
given in Equation (2.37) and (2.39), vanishes.eiforce the constraint, a corotational
lamina basis is usually constructed at each quagraiints such that one base vector
say €, is always orthogonal to the other tepande€, as shell deforms, and the Cauchy
stress componenty, = 0 is invoked to condense the material tangent moddéitails
can be found in Hughes et al. [32] and Belytschkal.33].

In this work, similar approach is adopted but folated with a Lagrangian
description. A lamina basi!, (i = 1,23) is constructed at each quadrature point in the
reference configuration and the plane stress ciondis specified in terms of thé®
Piola-Kirchhoff stress &8}, = 0, which in general is different frona}, = 0 unless the

lamina normal remains normal after deformationH &, coincides withe,. For
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fabrics, which are usually quite thin and transgesisear is negligible, the condition
S,; =0 closely enforces the plane stress constraint.

As the shell formulation is based on total Lagrangiescription, hyperelastic
constitutive models can be naturally incorporatBdr hyperelastic materials, a strain
energy function//(C) exists and the following relation holds

s:zgﬂﬁa, (2.70)
aC

whereS denotes the™ Piola-Kirchhoff stress an@ = F'Fis the right Cauchy-Green
deformation tensor, which relates to Green straik & (C —1)/2. The material
elasticity tensor is defined as
o’y
aCaC’
which relates the rate &fto that ofE asS=D:E.

(2.71)

In this work, St. Venant model, which is a simpk¢emsion of linear elasticity, is

considered and it is given as follows

S=D:E orS, =D, E - (2.72)

Since the Green stralf vanishes in rigid body motion, the constitutivedebcan be
applied to problems with large rotations, whiclthe case in macroscale fabric modeling.
On the other hand, even though the material prigseof fabrics are nonlinear, the
material model is still valid assuming that undermal wearing condition the strains in
clothing fabrics are small and linear. With thewmaption, St. Venant model is used as a
placeholder for the constitutive model of the macede fabric modeling framework.

The St. Venant model includes anisotropy and cagalsdy incorporated in the
nonlinear shell formulation. Using Voigt notatiaa introduced in Belytschko et al [33],

Equation (2.72) can be written in the followingrfor
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S.l Dll D12 D13 D14 D15 D16 E:Ll

SZZ D22 D23 D24 D25 D26 E22

%3 D33 D34 D35 D36 E33 (2 ) 73)

823 D44 D45 D46 2E23

3.3 Wm D55 D56 2E:I.3

3.2 L D66_ 2E12
for fully anisotropic materials. For an orthotropnaterial, only 9 moduli are
independent and the stress-strain relation is

Sll i Dll D12 D13 O O O ] Ell

S22 D22 D23 O O O E22

833 D33 O O O E33 . (274)

SZ3 D44 O O 2E23

S.I.3 Sym D55 O 2E13

SlZ L D66_ 2E12

And the plane stress constraints, as discussedehefan be enforced using the condition

S;; =0.

2.3.1.6 Solution algorithm

Newton’s method is applied to solve quasi-statabpgms (2.69). For a trial
solutiond”, the residual is calculated and the incrementgldcement is solved. The
procedure is summarized in Box.1.

For dynamic problems, the spatially discretizedesysin form of (2.68) is further
discretized in temporal domain using time integmatlgorithms. A widely used method
is the Newmark method, which is stated as followsven a solution at time stepas
(d“,v“,a“), whered, v anda denote nodal vectors of displacement, velocity and

acceleration, respectively, the solution at neretstem+1 satisfies

fint(dn+1):fext _M(dn+1)&n+1' (275)

where
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a™ =a +Aq
V™=V +ahtAa, v = V" +(1-a)Ata” +aAta*' (2.76)

d™ =d" + AAt?Aa,d” =d" +Atv" +(1- 2,3)—a + AAt?a’
The internal force is linearized as

L] =tm(d")+ k(o )omataa. 2.77)
As the consistent mass matrix is deformation depetidhe inertial forcé'™ = M (d) F:

is linearized about a triad” as
L] =m{d ) +m(d)mas ,BAtZ(MMd—*) m*jma. (2.78)

The external force is assumed to be deformatioegaddent and the linearization is
skipped. The linearized equation of (2.75) is

;oM (d)

(M(d*)+,8At2K( d*)+ aat o m*jmaﬂe’“—fi“‘(d*)—lvl(d*)@*. (2.79)

By defining an effective tangential operator ansideal, the equation is simplified as

K ha=-7", (2.80)

where

R =mler) e (o) e M )
: (2.81)
=—fe +fn (g )+ Mm(d )
The equation is similar to that of a continuum edetexcept for the terrdM /od.
Mass lumping is usually adopted to construct aahafjmass matrix. The
motivation is to reduce the computation expensekpticit solution. By settings = 0
in Newmark method, the tangential operator in (Rcthsists of only the mass matrix. If
the mass matrix is diagonal, the equation systentlazs be solved without factorizing

the tangential operator. Various mass lumping masehave been proposed to construct
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a diagonal mass matrix, as [32]. In this workhggical based lumping technique for
shell is proposed and it is summarized as follows:

/]5)(”-[98 PNAdQG, (quz 1, 2’3 ( )
= 2.82

xu t?

20,5 [0y PONZAQS, (x.1=4.9

where

A= ponS/[ZIQe poNf\dQSJ
0 Aoy <20

andt denotes the shell thickness. As the lumped nsa@gonstant, no linearization is

performed and the effective tangential operatorrasaiual are reduced to

K* =M + ek (d) (289
F*z_fext_'_fint(d*)_'_M@*' .

1. Initialization: set increment coumt = 0 and initial trial solutiond" =0
2. Solve for load/time incremem +1
a. Form a trial solutiord” =d"

Compute residuat =f™ (d* )—f e
Construct tangential stiffneds (d* )
Solve incremental displacemefd = -K (d* )_l [
Update the triad” =d” +Ad
Check convergence:

= Update residuat =f™ (d* )—f et

= f ‘r(d*l > RTOL then go to 2c.
3. Update solutiord™ =d"
4. Setn=n+1 and go to 2.

~0ooo0Co

Box 1: Newton’s method
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In structural dynamics, damping is usually introgldito represent the energy
dissipation in a system. A common practice isdd a viscous damping matrixinto

(2.75) and the system reads

£ (d™)+Cc ™ =fo —M(d™ ), (2.84)
Rayleigh damping is assumed to be proportiondi¢ontass and stiffness, i.e.
C=aM +bK . In general, realistic damping is related toregerial properties and the
damping matrix should be derived based on the ttatige model adopted. For
example, Rayleigh damping can be derived from ailkeVoigt viscoelastic constitutive
model for linear problems as illustrated by Hugimef82]. In this work, Rayleigh
damping is adopted as a placeholder before a fabristitutive model with realistic
dissipation feature is available. A modificati@rthat the damping is assumed to be
proportional to the material stiffness p&tt, only and the geometrical pait is not
damped. In addition, the mass matrix and matetiihess matrix are assumed to be
fixed based on the converged solution of the previome step and are not linearized in
the current solution phase. The damping matrgiven asC =aM +bK ,, (d”) and the

effective tangential operator and residual in (224 given as follows

{R* =M +AK (0 )+ antaM +antbK ,, (d") (2.85)

P (d)-M @ -aM v -bK, (")

Various assumptions on mass, damping and lineaiegield various effective
tangential operators and residual vectors as giv€a.81), (2.83) and (2.85). The
linearized equation (2.80) is then solved in tlarfework of the Newmark method,
which is outlined in Box 2.

The stability conditions of the Newmark method evesidered and they
constraint the maximum allowable time step for timtegration. A detailed discussion
on the subject is presented by Hughes [32]. Fotrakdifference time integration, i.e.

a =1/2 and B =0, the critical time step is given by
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At (2.86)

2
crit s C(f_ .
o). is bounded by the maximum frequency of the indigicelements and an estimate is

given by

o =2 (2.87)

max h '
whereh is the element dimension ard-=/E/ p is the bar-wave velocity, in whidhis

Young's modulus angb is density.

1. Initialization: set increment count0 and initial stated®, v®and a°

2. Solve for load/time incremem +1
a. Form predictors
a =0
V' =v"+(1-a)Ata" +aita’
2
d =d"+ A" +(1- 2,3)%&1“ + At

b. Compute residuaf - .
Construct tangential stiffned§”
d. Solve incremental displacement

Na= —(R* )_1 F
e. Update predictors

a =a +Aa v =V +altha;d’ =d” + AAt°Aa
f. Check convergence:

» Update residuaf”

= f ‘F‘ > RTOL then go to 2c.

o

3. Update solutiora™ =a ,v™ =v",d"™ =d’
4. Setn=n+1and go to 2.

Box 2: Newmark method
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2.3.2 Test problems
The shell element developed above has been testedame benchmark

problems and the results are summarized here.

2.3.2.1 Clamped square elastic plate with poindl loa

A square plate of thickneds= 0.1m is modeled in quarter-symmetry. A point
load is applied at the center of the plate. Anceraalytical solution using thin plate

theory gives the vertical deflection at the platater as

2
5 - _061D°P

3 5~ 5.6010°m

where E = 1.09®1pa, P=1N, b=10m is the edge length. The plate is modeled by 64

shell elements and the result&62x 10°m. The deformation is shown in Fig.10a.

o
= (lD“-Z:]EI_-% "' ..-
iyt

(a) Clamped square plate problem (b) Beam “roll-up” problem

Figure 10: Test problems for the shell element

2.3.2.2 “Roll-up” problem

In this problem, a cantilever beam modeled by tiedl £lement is rolled up by a

monotonically increasing rotational angle presatibe the free end. The resultant
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moment is monitored and it is compared well witd #malytical solution. Circular

curvature is observed in the deformed configurasisishown in Fig.10b.

2.4 Particle methods vs. finite element methods

Two alternative macroscale fabric modeling techagjhave been implemented
and tested in our clothing modeling framework: Tih& is a particle-based method that
starts directly with a discrete representationatifric as a system of mass points and
springs. The second is based on finite elementhoalst where the local equilibrium
conditions and constitutive relations are emploge@ point of depart. Although the two
techniques boil down to similar global equationtegss in terms of nodal forces and
displacements, the difference in their specifiaqaion discretization implies distinct
mechanics phenomena.

In essence, with particle methods fabric is treated fish-net, while with finite
element methods the contribution from the entiréese is considered. Consequently,
for particle methods, as the spatial “fish-net’cdétization of a garment is refined, the
masses and spring stiffness must be adjusted aogbrdand this is not necessarily a
trivial matter when dealing with fabric patchesroégular shape and size. The vague
physical meaning of spring stiffness in particletimoels also makes it difficult to translate
between fabric spring forces in such models andchtiieal stress level in the fabric being
modeled. Ad-hoc assumptions need to be made teestBese types of questions.

Finite element methods follow a more rigorous mathtical development by
considering the local equilibrium conditions andsiitutive relations. The global
discrete system is derived using the well-definete€kin approximation, where the
solution space is approximated by the linear coatimn of nodal shape functions. The
nodal force and displacement relation in the disoed model is derived by exact spatial
integration of the local constitutive relationshéelphysical significance of the spatial

integration is that the nodal forces include thetdbution of the entire surface or domain



42

rather than the vaguely-defined “fishnet” repreagah. Moreover, as the spatial
integration explicitly defines the relation betwete local constitutive behaviors and the
global nodal forces, the fabric stresses and stream be handled more rigorously and
straightforwardly than in particle models. On titeer hand, since finite element
methods are continuously performing spatial integns of stresses and strains, such
methods are more computationally intensive thatig@@amethods, which do not require
any spatial integration at all.

Depending on the objective, both techniques caspipéied to macroscale fabric
modeling. As illustrated in Fig.8, by experimeugtiwith the spring stiffness and mass
properties in a particle model, simulations of siog that appear visually realistic can be
achieved. However, if the objective of the modglisito realistically quantify the
mechanical resistance that the clothing exerthemtearer, visual realism alone will not
be sufficient. For this reason, the continuum degated shell formulation implemented
and tested in the current framework is somewhaenatiractive to the authors.
Specifically, one can insert realistic constitutimaterial models for fabrics into the
continuum shell framework, thereby increasing tkelihood of calculating more
realistic mechanical resistance parameters. Indaedhanical realism is paramount in a
clothing modeling framework used in designing pectitee systems for defense and
security applications.

It is arguable that fabrics possess discrete matmgarn structures and that it is
not appropriate to model fabrics using degenersitedl theory, which assumes material
continuity and models the bending behavior by iraggn through the thickness. This
argument could well be true and deserves furtherstigation. However, the advantage
of finite element methods is their unambiguous dation on the discretization
scheme, which is required when realistic mategaponses are being investigated. The
material discontinuity issue, if it were indeedraldem, can be treated by appropriate

constitutive models and/or resultant shell formiolad.
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CHAPTER 3
CONTACT COMPUTATION

A major component in fabric/clothing modeling isxtact computation, which
enforces the impenetrability and friction consttaiassociated with contact surfaces and
calculates the mutual tractions between them.atbni¢/clothing modeling, contact
problems can be found on both macroscale and masosOn the macroscale, clothing
cannot penetrate the skin of a wearer and it intenaith the wearer by exerting tractions
on the contact surface. On the mesoscale, mamig$adre structures of interwoven
yarns and the interactions between contacting ysigmsficantly affect the overall
mechanical properties of the fabrics. Contact aatiatjon is thus needed on both scales
for the fabric modeling framework.

In this chapter, contact computation approachdigediin this study are
discussed. A general formulation for multi-bodytaxt problems is presented first. The
kinematics of contact surfaces and the contacttcinss, such as impenetrability and
friction, are introduced and regularization tecluas to enforce these constraints are
described. Then details on contact computatiomnh@rfabric modeling framework are
presented. Since the foci of the macroscale arsbseale contact computations are
slightly different, they employ different soluti@pproaches. An explicit approach is
developed to solve the macroscale contact probddrare the whole framework is based
on a dynamic shell formulation and robustnessastiajor concern. An implicit
approach is adopted for the study of mesoscaleigéeractions, where quasi-static
responses of the model are the main focus.

Another topic associated with contact computatgoaallision detection, which in
general, detects penetration between two surfadepending on the specific surface
descriptions, the cost for collision detection gari In finite element computation, where

surfaces are usually described as meshes compbgeddrilaterals and triangles, the
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collision detection can be expensive. Some susfaaa alternatively be defined as scalar
functions of spatial coordinates, i.e. implicitfaue. The cost for collision detection with
implicit surfaces is much lower but the tradeofthat these surfaces are relatively simple
and may not be able to realistically represent derghapes. Efficient collision

detection still remains its own challenge and divacesearch topic, e.g. [36,37]. Itis
thus not pursued in this study, and instead, stanotzlision detection techniques are
adopted as placeholders. However, the idea ofusiplicit surfaces is explored here to

make the macroscale contact computation more affbed

3.1 Contact computation

3.1.1 Problem statement

To keep the discussion general, contact betweetipteudleformable bodies is
considered. Special cases, such as the rigidaegieoblem, where a deformable body
interacts with a rigid surface, and the self-conpaoblem, where different portions of a
deformable body interact, can be readily includethis formulation. The discussion
here follows mostly Laursen and Simo’s work [38].

Consider two deformable bodies, denoted in theipeetive reference
configurations byQ{’ 0 R, wherensd denotes the number of spatial dimensions and
the superscript =1, 2 indicates one of the two bodies. Subsequent gordtions in a
time interval[0,T| are given by mapping” : Q" x[0,T] -~ R™. The motions of the
two bodies are given bg® (+, t). Atany time instant J[0,T] the configurations can
be denoted ag”, (i =1,2). For a material poink JQY, its spatial counterpart ais
given byx =’ (X). Assume that a pair of potential contact bourekais designated
r® 0oQl andr® 0oeQ?, which includes all material points where contagght
occur. The current positions of the contact bouedaare given by =" (F“)) ,

(i =1,2).
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The equilibrium of each body is governed by the esémoal equations for a single

body as those given in Chapter 2. For bodlge equations are summarized as follows:
R+ AVE = P in @
PON® =t onr® , (i not summed) (3.1)
u’ =g onl{

where R} is the £' Piola-Kirchhoff stress in body " and '’ denote the natural
boundary and the essential boundary of the bodpeaively. In addition, tractions also
develop on the contact boundarié8 when the two bodies are in contact and interact
with each other.

By introducing an admissible variation of the cgnfiationde® 0% for each
bodyi, with " consisting all smooth admissible variations whiahish on the
essential boundaries, (i.8¢"” =0 on "), and by integrating the product of the
variation and (3.1)over Qf’, the weak form of each bodygan be derived following

integration by parts as follows:

oW ((pt(i),é_(p(i)) = NG - WD + WO = SO (3.2)

int ine

with

WY = j o RYdQY, internal virtual work;
o

oW = j ol ppdQY + j op"tVdr®, external virtual work
ol ro

WY = j ol p00dQY | inertial virtud work;

o)

oW = j ot Vdr®, contact virtual work.

cnt
a0

ow® ((pf‘) : 5(p‘”) is the sum of internal virtual work and the vittwaork due to inertial
forces minus the external virtual work and it sldbwénish if no contact tractions exist as
was true for the single body case in Chapter 2. cbaotact problems, the total virtual

work ow® ((pt(i),é-(p(i)) is equal to the virtual work done by the contaattions on
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boundaryr ™, sw®

cnt ®

Equation (3.2) must therefore hold for each biogtyany instant
of timet.
The weak equilibrium condition of two bodies in tact is obtained by

combining (3.2) for both bodies and is written as:

éVV((Pt , 5(|)) = oWw® ((l)t(l),a—(l)(l)) + 5\N(2)((|)t(2),5(|) (2))
= j Se® TVdr @ + j d¢ @[T @dr @

r@ r@

(3.3)

the right hand side represents the contact virtwek integrated over the contact
boundaryl® and®. The notationyp, indicates the collection a§{", (i =1,2) and
likewise for dg . Considering the fact that?dr @ = -t @dr @ at the contact point, the
right hand side of Equation (3.3) can be combirsed single integral over one surface

and Equation (3.3) can be written as

W (@,,09) + W, (¢,,d¢) =0, (3.4)

where

W, (0., 50) =~ [ T¥ ffoe® -9 dr (3.5)

F
Utilizing the arbitrariness of the variatiahp , Equation (3.4) can be solved for
provided that the contact tractidr” is known.

The key to contact computation is determinatiothefcontact boundary and the
contact tractiont , which are both unknown prior to solving the pshl The traction
is determined by considering the impenetrabilitg &iction constraints of the contact

boundariesy®”, (i =1, 2).

3.1.2 Frictionless contact problems
For frictionless contact, the contact traction iwes only the normal component

and it can be written as

t®=tn, (3.6)
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wheren denotes the inward normal to the surfg€® andt, depends on the
interpenetration of the two bodies. It should b&ed that as a point of contact, the

inward normal toy™ coincides with the outward normal gf* .

3.1.2.1 Impenetrability constraint

In the contact computation literature, a contaat igausually designated as a
slave surfacd ™ and a master surfad€? , and the impenetrability constraint is
enforced such that no material point on the slaviase, i.e. X OI® | is allowed to
penetrate any part of the master surfae= q)fz)(r(z)) at any time. The master-slave
designation does introduce bias by allowing masteles to penetrate the slave surface.
However, this unsymmetrical behavior can be elit@ddy alternating the roles of
master and slave of the surfaces.

The penetration is usually quantified by identityitne closest projection point of
a slave node onto the penetrated master surfameex@mple, in [38] the penetration is

defined by a gap function as follows:

g(X.t)=sign(g (X, 1))|a(X, 1), (3.7)

where

|g(X..t)|= min |o® (X, .t) =@ (X, 1)) (3.8)

X DI’
and

sign(g (X, 1)) = {1—10|tfh (Z(rl\)/v(i:es.’t) is admissible

For any pointX O™, the pointX  Or® achieving the minimum, which is denoted by
X, is obtained by finding the closest projectionxof= ¢ (X,) onto y**. Since the
identification of X_depends implicitly on the material poiit, and timet, it can be

written asX,, = X, (X,,t). The gap function can be rewritten as follows
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g(Xt)=~[0® (X, 1) =0? (X, (X.t).t) |m, (3.9)
wheren is the outward normal tg*® at the material poinK, . The impenetrability

constraint is mathematically stated as

g(X,t)<0. (3.10)
Since the contact surfaces are usually not bondédrae to separate, no tensile

normal contact traction is permitted, which yields condition

ty (X,,t) = 0. (3.11)
The normal contact traction depends on the intespation of the two bodies. When
t, >0, no penetration is allowed argl=0; while wheng <0, i.e. the two bodies are
not in contact, there is no contact traction §pek 0. This relationship can be

summarized as follows

ty (X, t) g (X, t)=0. (3.12)

In addition, a persistency condition is written as

ty (X, t)g(X,,t)=0, (3.13)
which implies that when the two bodies interaet, i, >0, the change of the penetration
remains zero, i.eg =0. The equations (3.10)~(3.13) are usually caledkuhn-Tucker
conditions for normal contact and the normal cani@ction magnitude can be
determined from them.

According to the gap function expression given3dr®), it can be verified as in

[38] that for a variation in configuratiakp , the variational penetration is

59 =-nde® (X,)-30?(X,)). (3.14)
which when substituted in (3.5) and combined wal6) yields a compact form for the

contact virtual work as follows

M (¢,,39) = j t,ogdr® . (3.15)

r
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3.1.2.2 Discretization

In finite element computation, the surfaces arealiguliscretized as meshes and
the discrete forms of the gap function (3.9) atestbonsidered. For example, a master
surface can be represented by a mesh of quadaisteAssume that each quadrilateral or
segment, a term commonly adopted in the literature of aohtomputation, is defined by
bi-linear isoparametric mapping as

X = DN, (€)X (3.16)

=1
whereg = (51,52) denotes the natural coordinates bounded'a&’ D[—l,]] and N, (&)

is the nodal interpolation function

N, (8) = 5 (1 &) (1 6%67). (3.17)

According to (3.16), the closest projection paiijt=® (X, ) can then be interpolated

as

%= 3N, (B, (3.18)

where & denotes the natural coordinates of the projegimnt. & in general is a
function of the current configuratiop, and in the discrete setting it depends on the
current positions of the slave node and associatgester nodes. The details on the
determination of are presented in Section 3.2.1.

With the discretization, the gap function can bédtem as

g=-NTx°, (3.19)

where



Likewise, the variation of the gap function in dite form reads as

og =

where d®° denotes the nodal variation

oD° =

Nl andx® =
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o (X,)

() (

(2)

X

ml

X

(
() (

X

m3

ms) |

(2)

&L
>

)
me) |-
)

X

m3

X X X X

m4

50

(3.20)

(3.21)

A schematic of the impenetrability condition fotilear master segment interpolation is

shown in Fig.11.

Figure 11: A schematic of the impenetrability coastt for a bilinearly interpolated
qguadrilateral
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Each slave node and the master segment it perseeti@tebe treated as a contact
element and the contact virtual work given in (3.ik5calculated as a sum of

contributions from all the contact elements as

O, =D WS with WS = [ t,5gdr® (3.22)

re

wherelY is the domain associated with a slave node. &cn element, if it is assumed
thatt, is known, a contact force vector can be constdubteinvoking the arbitrariness
of o®, as

f == N dre. (3.23)

r

Since the vectoN_ depends on the configuration through the idertifin of & andn,
the contact force vector is a function of both egunfation andt,, . A global contact

force vector can be constructed by assemblingdhé&ibution from each element as

= Ar). (3.24)
Likewise, by assembling the gap function (3.19)dach contact element as a vector, the
impenetrability constraint in discrete form canvinéten as

g=G =<0, (3.25)
wherex =d + X is the updated nodal position vector and

G =A(-N]) (3.26)

is usually called contact constraint matrix, whiglassembled from the vectbdt, given
in (3.20) for each contact element. Si¢gedepends on the updated nodal position
through the identification of , the contact constraint matrix is a functiordof.e.

G=G(d).
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3.1.2.3 Penalty formulation

In penalty formulation, a penalty parameggris introduced to penalize a

violated constraint. The normal traction is asstinoebe

ty =&y (9), (3.27)
where (o) = (o+|o|)/2 is the Macauley bracket function. For an admlesiisition, i.e.
g<0, ty, =0. While wheng >0, where a penetration occurs, a penalty normatitrac
ty, =&,9>0 is applied to push the penetrating pair apartm@ared to the Kuhn-Tucker
conditions, the penalty method is exact only wiagn- « . For a finite penalty
parameter, penetration is allowed.
The advantage of the penalty formulation is thateithe normal contact traction
t, is a function of deformation as indicated by (3,2fe only unknown in (3.4) i9, .
By introducing a finite element discretization aswhsidering the arbitrariness 6 , a
nonlinear equation system in terms of the nodalldcement vectad can be derived as
follows:
™ (d)+M @+ (d) =, (3.28)
wheref™is a force vector contributed by contact tractiod a=d is the nodal
acceleration vector. For simplicity, the exterfmaite and the mass matrix above are
assumed to be deformation independent. The namlgystem of equations can be
solved by the Newton’s method or some variatiomebe For dynamic problems, the
accelerations can be integrated by a Newmark tiiegjration scheme. Consistent
linearization of the contact forces is needed rigplicit solution methods and some

development on this issue is presented in [38,39].

3.1.2.4 Lagrange multiplier methods

Instead of assuming that normal contact tractioagunctionally dependent on

the penetration as is done in penalty formulatibagirange multiplier methods treat the



53

tractiont,, as an unknown independent of the deformagpn The unknown is usually
denoted as a Lagrange multiplidy . By assembling the Lagrange multiplier for each

contact element as a vectbr the discrete equilibrium equation can be writisrfollows

f™(d)+M @+[G(d)] B.=f*, (3.29)

whereG is given by (3.26). The operatidh’ [A. distributes the Lagrange multipliers
A, to the associated master and slave nodes and yrldquivalent nodal force vector
due to contact.

As the Lagrange multipliers introduce additionakmiowns to the system of
(3.29), the impenetrability constraint (3.25) isismlered to augment the system. A slave
node can either be in contact with the master sarfahich corresponds to the equality
constraintg =0, or free from contact, which corresponds to thegjirality constraint
g <0. Assuming that the set of the slave nodes inamn$ available, (i.e. those with
equality constraint activated), the impenetrabitibnstraint given in Equation (3.25) is

equivalent to the following discrete equality coasit

G(d)x=0. (3.30)
Given &, Equation (3.30) literally projects a slave nowterf its penetrating positior,
to X,,, and the procedure can be conceptually writteR,as proj (xs).

To determine the active slave node set, a triat&mor procedure is usually
adopted. By assuming an initial trial set and tmiesing G based on the trial, Equations
(3.29) and (3.30) are solved simultaneously fortbéal displacements and the Lagrange
multipliers. If a Lagrange multiplier is negatiwehich indicates a tensile traction
developed at the slave node, the slave node isvenfoom the active set. A new
computation is restarted with the modified actilsa/e node set. The trial-and-error
procedure iterates until both the equilibrium caiotis and the impenetrability

constraints are satisfied.
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3.1.3 Frictional contact

Friction usually exists between contact surfacesiameneral the tangential
components of contact tractions are nonzero. fibeoinal traction depends on the
relative motion of the contact surfaces. Staitifsn occurs when there is no relative
motion between the two surfaces while kinetic foictoccurs when the surfaces slide
against each other. Friction laws are formulatedescribe the relationships of the
frictional traction and the relative motion of tbentact surfaces. A simple example is
the Coulomb friction law, where the static frictimmassumed to be bounded by a critical
value and the kinetic friction is proportional teetmagnitude of the normal traction with
its direction opposite to the slip direction.

In this work, the frictional contact formulationgmosed by Simo and Laursen
[38] is adopted. In their formulation, a convecbasis is constructed to describe the
frictional traction and the slip rate and the foatlaw is frame indifferent. Their work is

based on a continuum framework and can be reaxlignded for a spatial discretization.

3.1.3.1 Surface parametrization and convected basis

The contact surfaceB"” and ), (i =1,2) can be parameterized as follows
ro=wd(A) andy® =w?(A40), (3.31)

where AV OR™™ and ¥ = o« ¥{ with o denoting composition. According to the
parametrization, for any poit, O ®, one hasx,, =¥ (&) whereg0.4® denotes
the natural coordinates. Likewise fy, 0 )/?, one hasx,, ='¥{? (&). The bi-linear
isoparametric mapping given in (3.16) can be vieagd special case of the
parametrization.

With the parametrization, convected bases are eléfas partial derivatives of the
mapping with respect to the natural coordinates:

0Py (&)

25 (3.32)

E,(8)=
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0P ()
o0&

where F?is the deformation gradient correspondingptd . By introducing the

and e, (8)= =F?(¥?(2))E, (&), (a=12), (3.33)

notation &, the material point achieving the minimum in (X&) be written as
X, =¥ (g) (3.34)

and its spatial counterpart, i.e. the closest ptiga of x = ¢ (X) on )/?, is obtained

similarly as
X, =¥ (E). (3.35)
The convected base vectorséatire denoted by

T, =E, (%) (3.36)

and T, =€, (F,) . (3.37)
The outward normal used in the previous sectionbeareadily obtained by

Tlx‘l'z

[T, x 1|

(3.38)

3.1.3.2 Frictional kinematics

The slip rate is derived by considering the tinte @& the change of the relative

position betweerx, = (X,) andx,, =(pf2)(>_<m). Whent,, >0, according to (3.12)

S

and (3.13), one hag =0 and g =0, which indicates that

%[(p(l)(xs,t)—(p(z)()_(m(Xs,t) t)]=o. (3.39)

Using the chain rule, the time derivative yields following expression for the relative

velocity

VO(X,1)=VO (X, (X1) )= FJ”()‘(Q%[)‘(m (X.1)]. (3.40)
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where the right hand side is related to the chafigeaterial point>_(m due to the relative

sliding of the contact surface. A geometric objeadefined as

‘4(Xsi)=£%[Xm(xsi)]=?”T;, (3.41)

which represents the relative velocity in the caned description. The dual of the object

can be written as

V(X t) =M, ,E7T7, (3.42)
whereM , =T, [T, is the metric and“ (T, = J; . Pushing forward the dual yields the

spatial relative velocity, i.e. the slip rate

V2 (Xo,t) =M,,&0 . (3.43)

3.1.3.3 Frictional contact constraints

The frictional contact traction includes both nolawad tangential components

and it can be written as

tW=tyn-t7, (3.44)

where the tangential tractidfi can be expressed in terms of the convected basis a

ty =t 7. (3.45)

Assuming the Coulomb friction law for the frictidrteaction and the slip rate, the

following conditions hold:

®:=[th|- s, <0

bt _

VT_ZEﬂ‘O (3.46)
720

®7=0
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where y is the friction coefficient and is the magnitude of the slip rate. According to
the friction law, slip occurs along the directiontd when‘t?‘ = it ; Otherwise stick is
found if [th| < st .

With contact tractions expressed as (3.44), théaovwirtual work (3.5) can be

written as

W (9,.0¢) =~ [ (tyn—t, ) ({oe® - dp®)dr®. (3.47)

r@

It can be verified (as in [1] or Appendix A) thahen g =0,

& =17 [foe® (X,)-39? (X)), (3.48)

which together with (3.14) yields

oW (9,.09)= [ (tyog+t, &F7)dr®. (3.49)

r@

3.1.3.4 Penalty reqularization

The tangential frictional tractions are determined by the friction law (3.46).
The analogy of the friction law (3.46) with plastyccan be easily identified. (3.46%
analogous to the yield condition and (3A&n be interpreted as a flow rule. By

introducing a tangential penalsy , (3.46) can be regularized as

®:=|th|- s, <0
2 1
1" ﬁ‘zﬁvt‘? , (3.50)
{20
®¢ =0

where in (3.50) £t° =t, 7 is the Lie derivative of the tangential tractith When
® <0, one hag? =0 and Equation (3.50)becomes t? = £ v2, which is similar to

elastic loading in plasticity.
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With (3.50), a return mapping algorithm can be wistito integrate the friction
law. Given an incremental displacement from tinepa to the next step+1, a trial
state is first constructed by assuming that thek stondition is satisfied. If (3.46)s
violated with the trial, a return mapping is apglieAssume that the normal component
of the contact traction is regularized by penatignfulation (3.27), the equations for

return mapping can be summarized as follows:

th+1 = gN <gn+1>
Trial state: t,, =t T&My, [?,ﬁl —Eﬂ (3.51)

n+ly
+1 - MN

*

n+l

0}

b
tr

n+l

*

t , if®,, <0 (stick);

Ny n+l =

*

Return mapping: t, = t

) : (3.52)
Tty

t;f" , otherwise (slip
b

n+l

The details of the algorithm were presented by Samd Laursen in [38]. Consistent
linearization of the algorithm produces unsymmaealrtangent operators and the reason is
due to the nonassociativity of (3.46More discussions on this were also made in [38].
An algorithmic symmtrization technique based onmaegted Lagrange multiplier

method was proposed in [40] and the techniqueopiad for the mesoscale yarn

interaction study, which will be introduced in Sent3.4.

3.2 Collision detection

3.2.1 General mesh-to-mesh collision detection
For contact computations, given the position obaenode X, it is necessary to
identify its closest projection poin, on a master segment, based on which the
penetration and the relative sliding between theeshode and the master segment are

calculated. The identification procedure is usuedllled collision detection. For a
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general mesh-to-mesh contact scenario, the calldatection usually takes three steps as

outlined by Hallquist et al. [44,45]:

3.2.1.1 Nearest neighbor searching

In this step, the master node that is closesigiwen node is identified. For a
problem withM master nodes ard slave nodes, the total complexity of the global
search involves a complexity @(MN) . Spatial locality may be utilized to reduce the
cost toO(N) by assuming that the nearest neighbor at thetimetstep is in the
neighborhood of the current closest node. Howetes,assumption is not valid if

contact surfaces are highly distorted.

3.2.1.2 Master segment searching

Multiple master segments surround the master nodele objective of this step
is to determine the active segment which contdiagtojection of the slave node.
Assume that the position of the slave node andnhster node is denoted By andy,
respectively. The following conditions were propd$y Hallquist et al. [44,45] to

identify which of the segment if any contains thejgction

(c,xs)c,xc,) >0 and(c, xs) [{sxc,) >0, (3.53)
wherec, andc, denote the edges of the segment as shown in FidAd42uming that the
position vector ofx, relatively toy is denoted by =x, -V, the vectosis the

projection of the relative position vector onto gegment. It is determined as follows
s=p-(pd)t, (3.54)
with

C, XC,

p=Xx,-y and t= :
e xc,|

(3.55)

where vectot is the outward normal to the segment considergadiaty.
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For a pair of slave and master nodes determined fhe nearest neighbor
searching in the previous step, the conditionsrging3.53) are applied to each master
segment that connects the master node. Dependitigedocal convexity and/or
concavity of the master surface, the condition8iB3) can be satisfied by multiple
segments or none and thus become inconclusivthefe cases, the slave node is usually
projected onto the intersections of segments. tAildel discussion on this issue is

presented in Section 3.2.2.

Figure 12: A schematic for master segment searatongitions

3.2.1.3 Projection point calculation

In this step, the closest projection point of tles node poink, onto the master
segment is calculated. For a slave penetratingadrijateral master segment, the gap
function definition shown in Fig.11 and expressedquation (3.9) is used. If the
qguadrilateral is defined by a bi-linear isoparameeatrapping, i.e. (3.16) and (3.17), the
natural coordinates of the projection poigt (?1,?2) will satisfy the following

conditions:
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e B )0
Xon (E) [ﬁxS -X,, (E)) =0

These equations are nonlinear and can be solvadividy using Newton’s method for

(3.56)

&. The tangent vectors, , (a =1,2) and the normal vector are then determined by
Equation (3.37) and (3.38), respectively. Basethem, the element level contact
contributions to the global residual force vectod @éhe global tangent stiffness matrix

can be computed and assembled.
3.2.2 Improvements on master segment searching

3.2.2.1 Segment searching conditions

The conditions given in Equation (3.53) can be imatosive in that, for a convex
master surface, multiple segments may satisfy dineliions, while for a concave master
surface it is possible that none of the segmeiitsfies the conditions. When these
uncertainties occurs, algorithms specifying whicister segment to be considered for
the subsequent contact computations can significaffect the final results and even the
convergence of the solutions. This issue has Oesussed by Laursen in [41] for two-
dimensional problems. In this section, the disicusis extended to three-dimensional
problems and a new segment searching algorithrevisldped.

First, a set of conditions is devised, which isiegkent to those in Equation
(3.53) but with less associated computation expeAsec,, ¢, andt are linearly

independent, the vect@r=x_, -y can be written as

P :(p m:l)cf"(p m:z)cz'|'(p [ﬂ)t ’

from which one has

s=p-(pd)t=(ple)c, +(pe,)c,. (3.57)
Substituting (3.57) into (3.53) yields
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(e,xs)He, xc,) =(pLe,)[e,xc >0,
(6x9)fox) = (p &) (pI2eyecf >0

. 2
Since|c,xc,|” >0, one has

(3.58)

ple, >0 andple, >0. (3.59)
These conditions are equivalent to those of (30b8)jnvolve only two dot product

operations, eliminating the need for four crossdpiat operations.

3.2.2.2 Two-dimensional problems

In two-dimensional space, a master node can have o surrounding
segments. Assume that the two segmentgaa@adc,, and the projection gb =x, -y
on the segments are denotedfpy=p[C,, (i =1,2). Depending on the relative position of
the slave node and the master segments, four Glsssated in Fig.13) are possible:
1. p, >0 andp,> ( both segments may be active;
2. p,>0andp, < ( segment, is active;
3. p,<0andp,> ( segment, is active;

4. p,<0andp, < ( the intersection o€, andc, is the projection and both

segments are active.

Figure 13: Four cases to determine active mastgneet
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In Case 1, both segments are candidates, posiggemess problems. A
common practice is to choose the segment involthegninimum penetration as
mentioned in [41]. An even simpler practice, @soduced in [45], is to choose
whichever segment that satisfies the condipor O first. These practices can introduce
algorithmically biased artifacts to the computasioBy following the time history of the
slave node’s position relative to the master safadoetter estimate on the actual master
segment may be obtained. However, this idea isuntiter explored here.

Another issue is associated with Case 4, where $ggments are active. If only
one constraint is applied as [45], the solution msgillate as the constraints are
alternatively activated and deactivated and thilsdaonverge. For example, in the
following problem (Fig.14) an elastic block is psed onto a concave rigid surface.
Node 1 penetrates both segmewisandc, as the block deforms. If only one constraint,
sayc,, is activated, the solution may oscillate betwpesition 1 and 2. Penetration
persists and convergence is affected. To avogdgtuoblem, active constraints should be

applied simultaneously.

Figure 14: Solution oscillates if only one consitas applied



64

3.2.2.3 Three dimensional problems

In three-dimensional space, assume that a mastieriasurrounded by four
segments. The four intersections of the segmeatdemoted by, (i =1,2,...4 and the
projection ofp =x,—y on the intersections ape=p (¢, ,(i =12, A) . Depending on the
combinations of the signs qi , there are sixteen possible cases, which can be
summarized as follows:

1. p<0,(i=12,..4, the slave node projected onto the master node;
2. p>0andp,< Ofi j= 1,2,..4ardi), edgec is active;
3. p.,p;>0andp, p,< ( both edgec, andc, may be active;
p,, p, >0 andp, p,< ( both edgec, andc, may be active
4. p,p,>0andp, p,< ( segmenic,c,) is active;
p,, P, >0 andp, p,< ( segmen{c,,c,) is active;
p,, p, >0 andp, p,< ( segmen{c,,c,) is active;
p,, P, >0 andp, p,< ( segmen{c,,c,) is active;
5. P, P, P;>0andp,< ( both(c,c,) and(c,,c,) may be active;
P,, Ps, P, >0 andp, < ( both(c,,c,) and(c,,c,) may be active;
P, P, P, >0 andp, < ( both(c,,c,) and(c,,c,) may be active;
p,, P, P, >0 andp,< ( both(c,,c,) and(c,,c,) may be active;
6. p>0,i=12,..4, all four segments may be active.
If multiple segments or edges are active, it isegsary to apply the constraints

simultaneously to avoid solution oscillation.

3.2.3 Collision detection with implicit surfaces
General mesh-to-mesh collision detection as desdrio Section 3.2.1 can be
computationally intensive and a major portion @& #gxpense is due to the global nearest
neighbor searching, which has a complexity propaei to the number of nodes in both

surface meshes. Locality may be utilized by asagrthat candidates for nearest
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neighbors at a time step-1 belong to the neighborhood of the current neareighbors

at stemn. However, as noted previously, this assumptionbminvalid for problems
where the contact surface meshes are highly destorThe other significant bottleneck of
collision detection is the projection point caldida, where a nonlinear equation system
such as (3.56) is solved with Newton’s iteratioBsficient collision detection algorithms
for general mesh-to-mesh contact still remain divacesearch topic, e.g.[36,37]. A
discussion of these algorithms is beyond the sobpi@s study and thus not presented
here.

Some surfaces can alternatively be representetbbgd mathematical forms
instead of discrete polygonal meshes. Such asréausually named as an implicit
surface, which is defined by a scalar functionpatsl coordinates a$ (x) =0. Given
a spatial poink, the sign of the function value indicates the possiof the point relative

to the surface.

If f (x) >0, x lies outside of the surface aisdhus admissible
If f(x)=0, x is on the surface; (3.60)

If f(x)<0, x lies inside of the surface aisthus inadmissiblt

An example of an implicit surface is an ellipsomhich is defined by a scalar function as

f10)=3 Lk - f /n?]-2=o0, (3.61)
where >q°,(i =1 2,3) denotes the center of an ellipsoid andre the radii along the

principal axes. With an ellipsoid, the expenseallision detection is significantly

reduced.

3.3 Contact computation for macroscale clothing eliod

3.3.1 General considerations
Methods for modeling mechanical interactions betwaething and a wearer are

studied in this section. Clothing can interactwatwearer in various aspects, such as
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weight, size, fit and stretchiness of fabrics efbe study here concentrates on the
contact tractions that clothing exerts on a wealfdre tractions are treated as
fundamental quantities, which can be further relateother interaction measures. To
guantify the contact tractions between clothing araearer, the contact computation
techniques outlined in Section 3.1 can be utilizkldough the solution method can be

simplified somewhat based on the considerationsrdesl in the following subsections.

3.3.1.1 Signorini’'s problem

The problem is to calculate the time history of tbhatact tractions that clothing
exerts when a wearer goes through given motiowns.sifnplification, two assumptions
are adopted. First, the body surface of the wear@ssumed to be rigid, which excludes
the possibility of body deformation introduced Bgthing. Second, the motions of the
wearer are prescribed and do not change in resporise clothing interactions. These
two assumptions limit the problem to a unilatecarsario, where clothing passively
responds to the evolutions of a rigid body surfad@ch in contact literature is classified
as a “rigid obstacle problem” or a Signorini prahle These assumptions can be removed
if a deformable human body model is available dnlde sensitivity of human motions to
clothing resistance is understood. However, tlassemptions are currently invoked to

reduce the complexity of the problem.

3.3.1.2 Expense of collision detection

As mentioned in Section 3.2, mesh-to-mesh collisietection is computationally
intensive. A coarse approximation of a completean body surface mesh may require
thousands of polygons and that number multipliethieysize of the clothing mesh makes
the collision detection quite expensive. To lithié expense, a placeholder human body
surface definition based on the concept of impBaitfaces is adopted. In this study, the
human body surface is approximated by an assembfagjgpsoids undergoing

prescribed rigid-body motions and contact compatator macroscale clothing modeling
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is discussed in the context of a discrete finigarednt clothing mesh interacting with

these ellipsoids.

3.3.1.3 Robustness of solution methods

The macroscale clothing model is based on the itmegration of a dynamic,
flexible clothing system. Both explicit and imptisolution methods can be used to
solve the problem. In general, explicit methodsa@apable of capturing transient
response with very small time steps and are thefeped for high-velocity problems. In
such methods, the nonlinear global equations caolved at each time increment
without Newton iterations. Implicit time integrati methods, which are more stable and
thus allow larger time increments, are mostly agapto solve quasi-static and low-
velocity problems. Implicit methods generally requNewton iterations to solve the
global equations at each increment.

However, for clothing contact problems, an impotrtactor to be considered is
the robustness of the solution method. The comrerg of an implicit solution scheme
relies on the consistency between the residuabveactd the linearized tangential
operator. For problems where complex contactuslired and very large deformations
occur, the discontinuities in the contact condsican affect the consistency and thus
yield convergence difficulties. For this reasamexplicit solution method is chosen to

study the clothing-wearer interaction problems.

3.3.1.4 Penalty formulation

For a contact problem based on a penalty formuidatiariations of the system in
Equation (3.28) are solved. As no extra unknowesrdaroduced, the penalty
formulation can be readily incorporated into staddanite element solution algorithms,
such as the Newton’s method (Box 1) and Newmasgnation methods (Box 2). For
central difference time integration, i..=1/2 and =0 in the Newmark methods

given in Equation (2.76), one has
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n+l _ n At n At n+l.
e
(3.62)

2
d™ =d" + Atv" +A—;a”.

The solution algorithm is as follows, (Box 3), waéhe Step 2.c is the only modification

introduced to the original integration scheme.

1. Initialization: set increment count0 and initial stated®, v® and a°
2. Solve for load/time increment+1

a. Form predictors
. At . At?
v =V" +?a”; d =d" +Atv" +—2an

b. Compute residual
F=fe -t (d)
c. Call collision detection module to identify pendima; calculate penalty force
fo (d*)and update the residual vecfor=7" —f" (d )

d. Construct tangent stiffness, i.e. mass matrix i; ¢hse
K'=M

e. Solve for the incremental acceleration
a=-(R°)

f. Update the velocity

Vn+l = V* +Ean+l. dn+1 - d*
2 )

3. Setn=n+1 and goto 2.

Box 3: Penalty formulation using central differenmcggration

While the penalty formulation has the benefit of mroducing any additional
unknowns to the analysis problem, a major disadgenof the penalty formulation is
ambiguity in the choice of a penalty parameterchidsen too small, unacceptable

penetration results, and if chosen too large, thiea time step size of an explicit time
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integrator can be significantly reduced. Some glineés on choosing appropriate penalty
parameters were given by Belytschko and Neal if [#®0ther issue in applying a
penalty formulation in clothing-wearer interactiomodels is that since the penalty force
changes discontinuously as penetration occurstaerdisappears, a contact node tends
to bounce on the contact boundary under the infleerf the penalty force. This
oscillatory response can be intuitively explaingdriderpreting a contact boundary as a
stiff cushion of penalty springs, which pushes pextimg nodes away and then releases
when penetration disappears. Since the clothingite flexible and provides little
restitution, such oscillatory responses shouldvaeded. For these reasons, an explicit
solution based on Lagrange multiplier methods 1&ebtiged for the macroscale clothing

modeling.

3.3.2 Explicit Lagrange multiplier methods

For explicit Lagrange multiplier methods, the cantsurface can be determined
directly by projection of the overlapped volumetlod bodies updated by uncoupled
integration without iteration needed. It was shdwrBelytschko and Neal [43] that in
this case the Lagrange multipliers with correchsign be determinable directly. A
similar approach, namely ‘forward increment Lagmangultiplier method was proposed
by Carpenter et al. [42]. In their approach, alt®r state is first constructed using
central difference time integration on both bodieglecting the contact interaction and
then the Lagrange multipliers that enforce the ingpeability constraints on the predictor
state are solved. Consider time stepping ft8ro t"™*, the equations can be

summarized as follows

fint (dn)+M mn +GT mn :fm (tn)
(3.63)
Gfd™ +X)=0
where the acceleration at time stépis decomposed into a predictor part and a comrecto

part asa" =a +a° with
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a=M* [ﬁf@‘t (t) - (d”)] anda® =-M'[G" " (3.64)
According to the central difference integrationestie

|
(at)°

(dn+l —2g" +dn—1) ’

the displacement can be written as
d™ =d +d°, (3.65)
with a predictor and a corrector displacement, @esypely as
d' =(At)*a +2d"-d™ andd® =(At)*a". (3.66)
If the impenetrability constraint is violated fdvet predictor displacemeni , the contact
constraint matrix is constructed &=G (d) and the corrector can be solved by (3:63)
GmE°+Gd +X)=0,

which combined with (3.66) and (3.64) yields thetange multiplier

w=[(at) MG | e d +X). (3.67)
The velocity is then calculated using

v =(d™-d") /(2at). (3.68)
The procedure above essentially prevents a slagde fnom penetrating the master
surface at time instant™ by applying a brake force vectaf, i.e. the Lagrange
multipliers, att".
Written according to the framework of Newmark timeegration, the procedure
can be summarized in Box 4. If no penetratioméntified, the procedure is identical to

the Newmark integration withe =1/2 and 8 =0.
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1. Initialization: set increment count0 and initial stated®, v® and a°
2. Solve for load/time incremem+1

a. Form predictors
2
v =Vv" +%a”; d™ =d" +Atv" +—A; a"

b. Solve for predictor acceleration

a =M (em) =" (d™) |

c. Update velocity
* * At *
V =V +—a
2
d. Construct the trial displacement far+ 2 by

2
d =d™ +Atv' +A—;d

If penetration is identified for the trial , solve for the Lagrange multipliers

and the corrector
A = [(At)z GM ’lGTTG " +X);

a®=-M[G" " andd® = (At) &,
Otherwise
A"™=0,a°=0andd®=0
e. Update the solution at+1

* At c
=v +—a
2

a™=a +a® andv™

3. Setn=n+1and go to 2.

Box 4: Forward increment Lagrange multiplier mettimdcontact computation

using Newmark integration

3.3.3 Simplifications

The algorithm in Box 4 is a general explicit sadatimethod for multi-body
contact, where both bodies can deform and moveceShe macroscale clothing

modeling is currently formulated as a Signorinikgemn, where the interaction is

unilateral, the algorithm can be simplified. Thearer’'s body surface is treated as a
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master surface with its evolution prescribed ana@etely independent of the contact
interaction. The clothing surfaces are treateslages and they are driven by the

evolution of the master.

1. Initialization: set increment count0 and initial stated®, v®and a°
2. Solve for load/time incremem+1

f.  Form predictors
2
v =Vv" +%a”; d™ =d" +Atv" +—A; a"

g. Solve for predictor acceleration

a =M (em) =" (d™) |

h. Update velocity
* * At *
V =V +—a
2

i. Construct the trial displacement and positiontiior 2 by

* n+l * Atz * * 3
d =d" +Atv +7a andx =d +X

If penetration is identified for the triad”, construct correctors
d® = proj (x*)—x* ,a =d°/(At)2 andA™" =-M [@&°
Otherwise
A"™=0,a°=0andd*=0
j-  Update the solution at+1

n+l

. . At
a™=a +a° andv™=v +7a°

3. Setn=n+1and go to 2.

Box 5: Simplification of forward increment Lagrangrultiplier algorithm

Following the algorithm in Box 4, a predictor ste&geonstructed by integrating
the projectiles of clothing nodes without considgrihe contact effect. In the meantime,

the master surface is independently updated baséueqrescribed human motion



73

kinematics. If the impenetrability constraint ishated, the predictor positions of the
clothing nodes are corrected by projecting theno dim¢ updated master surface. Unlike
the multi-body contact case, where Equation (3.68gds to be solved, the corrector
displacement can be directly obtained by projectimgenetrating slave node onto the
master surface. The projection direction may motibique and a natural approach is to
find the closest projection point. For ellipsoidalfaces, however, the gradient at the
penetrating trial position is chosen as the prgeadtirection, which does not yield the
closest projection point but gives a fairly clopp@ximation. The simplified algorithm

for unilateral clothing-wearer contact interactman be summarized in Box 5:

3.4 Contact computation for mesoscale yarn

interaction study

The objective of mesoscale yarn interaction studiés understand the effects
that such interactions have on the macroscopic amechl response properties of woven
fabrics. The details of the study are presentademext chapter, but here the discussion
is focused on an implicit contact algorithm for gtady. Due to its ready
accommodation of frictional contact constraintsulsing return mapping algorithm, a
penalty formulation is chosen.

There are two major difficulties in solving cont@gcoblems with a penalty
formulation. One is the choice of proper penalygmeters, which should effectively
enforce the contact constraints while not signiftbaimpacting the convergence of the
solution algorithm. The other difficulty is theyasmetry of the tangent operator
resulting from consistent linearization of the fion law. To address these two issues,
Laursen and Simo [40,41] proposed an augmentedabg@n method, which allows
small penalty parameters while still enforcing toatact constraints to a high precision
through an iterative augmentation procedure. Symmoa¢tangent operators are also

made possible within this method by fixing the nafitnaction when integrating the
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friction law. Their method is adopted for the yamteraction study and a brief summary
is provided as below.

The mesh-to-mesh collision detection techniqueied!in Section 3.2 is adopted
for the yarn contact computations since yarnsimgtudy are modeled with hexahedral
trilinear finite elements. The spatial localitysamption is applied as the contact surfaces
of yarns are usually not distorted excessively umndéinary loading conditions in woven
fabrics. A global nearest neighbor search is cotetlionly once at the beginning of the
analysis and subsequent searching is confinecetoglghborhoods of the current closest
nodes. The improvements discussed in Section 8r2.Enplemented for master
segment searching to reduce the possibility odaeshode trapped on the intersections of

multiple master segments.

3.4.1 Augmented Lagrangian regularization
In the augmented Lagrangian method, Lagrange nhiahgpare introduced in
addition to the penalty terms. The constraintsrargen as follows.
Impenetrability constraint:
ty =(Ay +€.9). (3.69)

Friction constraints:

®:=(t, Mt )m —ut, <0

. t, 1.
Maﬂfﬂ—fw-gT (tn )'Ta) , (3.70)
720

®7 =0

Above, A, and 4, denote the Lagrange multipliers for normal andyéamial contact
traction components, respectively. For clarity domponent form of the friction contact
is given. The only difference between (3.70) éh8Q) is that the frictional traction is

expressed in terms of the convected basis in fieeargce configuration as
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TP :tTaT", (3.71)
which is a pull-back of the spatial quantity (3.4%Yith the definition (3.71), the norm

can be written in terms of the material metric

M% =T [T* (3.72)
instead of its spatial counterpart, which introduftether complication for the

symmetrization of the tangential operators.
3.4.2 Solution algorithm

3.4.2.1 Global solution algorithm

The global problem is to fing,, A, andA; such that

OW (¢, d0)+ [ (tydg+t, &°)dr® =0, (3.73)

et
wheret, andt, are given by (3.69) and (3.70), respectively. & (3.73) is solved
by the following nested iterative procedure. Fing configurationyp, is solved by
holding the values of the Lagrange multiplieks and A fixed. Then the Lagrange
multipliers are updated by the penalty terms assediwith thep,. The procedure is
repeated until the contact constraints are enfondddexpected precision. The whole
solution algorithm consists of two iterative loopsere in the outer loop the Lagrange
multipliers are updated iteratively while in thenar loop the configuration/deformation
is solved with fixed estimate of the Lagrange nplitrs. Assuming that the solution of
the global problem at time steghas been determined, the algorithm to find thatsni

for the next step+1 is summarized in Box 6.

3.4.2.2 Return mapping algorithm

Equation (3.77) in Box 6 is obtained by applyinglkward Euler time integration
scheme to the rate-form constraints (3.69) and{3.1 is very similar to backward

Euler integration algorithms of constitutive retaiships in elasto-plasticity. The



76

procedure is displacement driven in that givennenemental displacement and the
current estimate of the Lagrange multipliet§) and A" , the contact tractionsy;
andtéfjla , are solved. Equation (3.77) can be solved tun mapping algorithm as
follows:

Trial state:

(k) — /() (k)
th+1 " <ANn+l + EN g >

n+l

W = A 4 M, &L -] (3.74)

oty n
Y2

() =1 +(k* ng B R~ — AR

D% =6 M [T

n+l n+1/;

Return mapping:

n+l —

t, if o <0 (stick)

e = b 3.75
Toa, (K Tty . . (3.75)
WM o T otherwise (slip
t M2t
|:Tn+l/; Tn+1y

3.4.2.3 Symmetrization

The tangent operator associated with frictionataoinis derived by linearizing

the frictional virtual work as
A[J'tTaé?”dF(l)J: [ At oFedr®+ [t A(oF7)dr®, (3.76)
o Fw rw

whereAt, is obtained by linearizing the return mapping &ltpon (3.75). Since the slip
frictional tractiont%‘fla depends org!) throught{ , linearization oft%‘fla generates a
term related taAg , which when combined witld¢ ® yields an unsymmetrical tangent
operator.

It is observed that if the normal tractitbﬁ"ﬁ1 is fixed in the solution phase, i.e.
Step 2. in Box 6, the asymmetry can be removedyrmmetrical augmented Lagrangian

algorithm was designed by Laursen [41]. And thecpdure is briefly summarized in
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Box 7. In Step 2, the stick/slip conditish*’, is defined in terms of the current estimate

n+l
of the Lagrange multiplier of the normal tractidﬁnfl, which is fixed throughout the
solution phase and thus yields symmetrical tangkeaperators. And then in Step 3 an

additional return map is applied to enforce thetional contact constraints with the

updated normal traction ™ .

1. Initialize the Lagrange multipliers and the augnaéiph counk
A, = A A=A andk=0.

n+l

2. Solve for nodal displacement, such that
0 e (02) =12,

wheref " is deduced fromj (tng +t, f”)dl"” with contact traction given by
r@

=1 )
" </]Nn+l tEy gn+1>

V2
(k) «—[+(K) aBt (k) — (K
¥ = (tTnﬂaM t ) <0

n+1/;

to

n+l

£
=k = T
1 =AW g Maﬂ(fnfjl —ff)—( e (3.77)
(t(k’ M A0 )
Tl'H’lﬁ Tl'H’ly
{20
k —

qJEH)lZ =0

3. Update the Lagrange multipliers and the augmemtatomntk
k+1) — ¢ (k k+1) — ¢ (k —
A =400 2D =0 andk =k +1.

e} 1’

4. Return to Step 2. until the solution (displacensamt multipliers) converges.

Box 6: Solution algorithm of the augmented Lagranginethod
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1. Initialize the Lagrange multipliers and the augnaéinh counk
0) — 0) _— —
A=A A=A andk=0.

“) such that

)=t

n+l?

2. Solve for nodal displaceme

fint (d(k) )_l_fcnt (d(k)

n+l n+l

where
K =/ (k)
th+1 - <ANn+1 +Ey >

n+l

0 —(t(k’ M ¢ )]/2

n+l +1p

—1A® <0

£00)

Tn+1g

(k) z 5
1, =A ver| M, (&5 -E7)-¢

(t(k) M P40

n+1ﬂ n+].y
(=0
B¢ =0

3. Update the Lagrange multipliers and the augmemtatoontk

(k+1) — 4+ (k)
Ale _th+1

CD(k+1) = (A(kﬂ)M aﬂ/‘ (k+1)) ﬂ/‘ (k+1) < O

n+l

¢
(k+1) — 4 (k) T,
/1n+1a tn+1a & (Z ¢ K K Y2
(t( ) M A0 )
I'H’lﬁ I'H’ly
{=z0
o =0

&

(3.78)

(3.79)

4. Setk =k+1 and return to Step 2. until the solution (dispraeat and multipliers)

converges.

Box 7: Symmetrical augmented Lagrangian algorithynhdursen [41]
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CHAPTER 4
MECHANICAL PROPERTIES OF WOVEN FABRICS AND
MESOSCALE FABRIC MODELING

Woven fabrics exhibit complex material behaviorst thypically feature
nonlinearity, anisotropy and hysteresis. In additihe response behaviors of woven
fabrics are sensitive to changes in load conditaamsdeformation. For example, the
biaxial extension property of a fabric differs sigrantly from that of biaxial
compression or uniaxial extension. Consequeritlg,a challenge to formulate
constitutive models for fabrics that successfudlgresent all these complex behaviors
and automatically adapt to various load conditions.

Woven fabrics are constructed by weaving yarnsemain regular patterns. The
yarns themselves are typically loose bundles akiddal fibers that are more or less
aligned. The material properties of fabrics argdty determined by the properties of
individual yarns, the topology of the yarn struetuand the interactions between the
interwoven yarns. Previous efforts have been naadereported in the literature to relate
yarn topology, properties, and interactions todberall fabric properties. Most such
models adopt simplified geometric descriptions gauth interaction assumptions, and the
generality of these models is thus limited.

In this chapter, a general three-dimensional textiechanics model equipped
with multi-body frictional contact computationsasnstructed. The length scales of the
models generally correspond to the dimensionsefitiit cells associated with the
relevant weave patterns. Since this length sealgpically much larger than the
diameters of the fibers that comprise the yarnspiuch smaller than length scale on
which human-clothing interactions are modeleds hereafter called the mesoscale. The
relationship between the mesoscale textile mechanaxel and the macroscopic fabrics

properties is investigated by following computaibhomogenization theory and unit
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cell analysis techniques. The organization of thigpter is as follows: First, the
mechanical properties of woven fabrics are brigftyoduced and some preceding fabric
constitutive models are reviewed. Then the contfmurtal homogenization approach and
the unit cell problem are presented. Finally, ma#dle modeling approaches to
incorporate realistic fabric properties into thecnescale fabric model framework are

discussed.

4.1 Constitutive models of woven fabrics

4.1.1 Mechanical properties of woven fabrics

In general, woven fabrics are constructed by wegptogether yarns along two
orthogonal directions, i.e. warp and wetft, follogicertain periodic weave patterns. The
mechanical properties of fabrics are mostly deteeatiby the properties of constituent
yarns, the configuration of the yarn structures @edinteractions between interwoven
yarns.

Fabrics exhibit highly nonlinear and anisotropibdé@ors. A typical load-stretch
curve of a biaxial extension test of fabrics iswhon Fig.15a, which can be obtained by
Kawabata Evaluation System for Fabrics (KES-F) [1Bhe initial part of the curve is
relatively compliant and it corresponds to the y@earimping, i.e. the curvatures of
yarns decreasing as the yarns are being straightgnthe tension. Then the fabric
shows much stiffer responses in which the yarnsetgally stretched. In addition, since
the yarn densities along the warp and the wefctdoe generally differ, the tensile
behaviors along the two directions are generalffgdint and exhibit anisotropy.

In addition to nonlinearity, woven fabrics also #éihhysteresis. A load-
deformation curve of a fabric bending test is skettin Fig.15c, from which one may
notice that energy is dissipated when the fabrsulgected to a loading and unloading
loop. Similar behavior can also be observed innkh@ane shear test as shown in

Fig.15b. The dissipative behavior of woven fabr&cdue to the frictions between and
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within yarns. From Fig.15b, one may also notica the fabric stiffens as the shear
angle increases. This is due to a phenomenorddalt&ing, where yarns jam against
each other and further loading induces deformatdfoyarns’ cross sections.

According to the brief introduction given above, krow that factors on the
mesoscale such as decrimping, locking and fricemmificantly affect macroscale fabric
behaviors. ldeally, a realistic fabric constitetirelationship should include all these
factors and a complete mesoscale yarn structurehmthe key in predicting the
complex fabric behaviors. In the following secBpsome of these models are reviewed.
Most of them are confined to the prediction of #talsehaviors and the plain weave

pattern is considered for simplicity.

A
o weft
2 ,
c 1
() ]
+ 1
/
/ warp
/
/! 8 weft
L A o
— » E 4 /I
1.C stretch ratio 2 T
n .~/ warp

(a) Biaxial extensic

v

shear angle

moment

S weft " (b) In-plane shear

(c) Bending

Figure 15: Typical fabric behaviors
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4.1.2 Simplified mesoscale fabric models

4.1.2.1 Spatial structure models

In 1973, Kawabata et al [46-48] constructed a Huliegensional structural model
to predict the mechanical properties of plain-wefagics made of various types of
yarns. In their model, the mechanical propertiesoostituent yarns and the geometrical
parameters characterizing the weave structurealaea as input and the fabric in-plane
deformation behaviors, such as the biaxial extengiee uniaxial extension and the in-
plane shear, are computed. Good agreement betiveiepredictions and experiment
data were achieved.

A unit structure as shown in Fig.16b was chosespfaroximate the actual yarn
structure at the crossing point (Fig.16a). Thevature and the cross section of yarns
were neglected and yarns were modeled as straghtents joined at the cross points. A
coordinate system was set at a cross point of awosywith axesX; and X, align with
the yarn directions and axis, perpendicular to the plar@X, X, . The initial
configuration of the structure was described byfttlewing parameters:

Yo Initial yarn spacing,
= |, initial yarn length,
g, the angle between yarand X, axis at initial configuration,
= h, crimp height, i.e. the amplitude of the wave afnyiaat initial
configuration,
wherei =12 indicating the warp and the weft direction respety. These parameters
can be determined by yarn densities and crimpgatveo sets of parameters measured
from fabric specimens.
Suppose a fabric specimen is loaded by biaxialnskba with stretch ratios of,

and A, along X, and X, directions, respectively. Due to decrimping, yaens deflect
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by h, andh, at the crossing point, as shown in Fig.17. Frbendeformed

configuration, one can compute the stretch ratiogams as follows:

— \/4 m:l. h.l. + 1y01)

Vah, “+ y01

) Uy

y2 2 2
4h.," + Yo,

(4.1)

The angles between yarns aXd axis change due to the decrimping as well anchéwe

angles can be evaluated as follows

cosf, = 2(hml _ hl)
\/4(hml - hl)2 + (/]13/01)2
2(hy, +h,)
O, = o 4.2
O e+ Uy 2

(a) A sketch of a realistic yarn (b) Kawabata’s yarn structure
structure model

Figure 16: Kawabata'’s yarn structure model
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Figure 17: The deformed configuration of Kawabataie structure model

For biaxial extension, Kawataba et al. neglecteddgnding in the yarns and
assumed that the yarns are subjected to axiabignshich were generally written as a

function of yarn stretch ratio as
Fr =0 (/]yi)- (4.3)
With this assumption, the force equilibrium at thess point yields two equations
F. =2g,(A,, Jcost, = 2g, (A, )coss,, (4.4)

where F_is the compression force between the yarns duerttact. Since this force is
related to the deformation of yarn under laterahpoession, another yarn property

function was introduced, which reads as

I =4(F.). (4.5)

where d,, denotes the decrease in the thickness of iyanaler the application df,.

Then the total change of the crimp height of twotaoting yarns are thus evaluated as
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1
o(F)=la(r)+a () (4.6)
which relates to the yarn deflection as

h,=h -(F,). 4.7)

Experiments were proposed and conducted by Kawabatiato determine the yarn axial
extension and lateral compression behaviors, nathelfunctions given in (4.3) and
(4.5).

For a given biaxial load cadd,,/,), Equation (4.4) and (4.7) can be solved
simultaneously foth,, h, and F_, with which the yarn tensile forces aloxg and X,

axes can be obtained by taking the projections as

F. =F,sing, (4.8)

and the forces per unit length of fabric are thiwem by

f =nF, (4.9)

wheren, is the number afyarns per unit length in the fabric. In their pgpKawabata
et al. proposed a graphical method to solve thatans and good agreements between
the model prediction and experiment results wetaiobd for plain-weave fabrics made
of different yarns and various weave structures.

For uniaxial extension, some modifications were entdcapture the initial
decrimping response of fabrics. The bending aedrdmsverse shear deformation of the
yarns in the free direction were included. Yarmesenstill assumed to remain straight, i.e.
an infinite large bending rigidity associated wiltle yarns and the bending was measured
by the change of the angi. The transverse shear was related to the fricteinween
fibers and the hysteresis was thus included.

In order to model the in-plane shear behaviorttingue required to change the

shear angle was considered and it was approxinagtedinear function with its



86

coefficient experimentally determined. Frictiot&lms were included in the torque
definition, which enables the model to predict blysteresis response of fabrics. The
combined biaxial and shear loading was modeled-eswtant forces were computed
from equilibrium conditions.

In their papers, Kawabata et al. treated diffeleatl cases separately and
different formulations and solution methods were@dd for each. To be used as a
constitutive relationship, Kawabata’s model needse generalized to include all
possible different loadings. One possible soluisoto model the yarn structure as a
spatial truss system with tension members modetang stretching and compression
members modeling lateral yarn compression. Taiohelkhe yarn bending and the
resistance to in-plane shear deformation, bendnggti@nsional springs can be added to
the system. When certain fabric strain is appleded on the equilibrium of the system
the resultant forces can be computed, from whielfdbric stress can be evaluated.

An example of such an extension based on Kawabawatke! was given by King
et al. [50], who used the same unit cell as propdseKawabata et al. (Fig.16b) was
used. In addition to yarn stretch, bending, ldteoanpression and the friction between
yarns, which had been considered in Kawabata’'s mtmab&ing was captured by using
locking trusses. Due to the relative complexityhadir structural model, the equilibrium

configurations were found by minimizing the totabs energy in the system.

4.1.2.2 Interacting elastica models

Instead of using simplified spatial truss mode¢ Ikkawabata’s model, De Jong
and Postle [51-54] proposed a continuous modeldoasenergy analysis and optimal
control theory. The strain energy of an interwoyam structure was first formulated
including the bending, torsion, lateral compressiod axial extension of individual

yarns, and then the configuration and the intefiorales and moments of the structure
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were obtained by minimizing the strain energy.thieir model, a single yarn is treated as
an elastica. The strain energy associated with lpanding was defined as

B 1

oo (K K,)’ds, (4.10)

Wy =

where « is the curvature of the yarh;andB denote the bending rigidity and the length
of the yarn, respectively; and an initial curvatageis considered. The tensile strain

energy is formulated as

W, = EZL (1-2)"ds, (4.11)
whereE denotes the Young’s modulus of the yarn ands the stretch ratio. The yarn

interaction is considered by a compression stra@rgy as follows

.= C(%T, (4.12)

whereC is the yarn transverse compression rigidatfhe yarn compression index, and
d, an arbitrary constant with the dimensions of langthe variablel is the
perpendicular distance between two yarns. Thdibguim state of the interacting
elastica structure is determined by minimizingttbtal strain energy in the system.

A similar energy-based model was introduced by faad Luo in [55]. In their
model, yarns were assumed to be in sinusoidal stuaghéhe constitutive equations were
derived from the strain energy of the yarns, whittuded axial deformation and
flattening of yarns. Fabric properties under urdb&xtension were predicted and good

correlation between the predictions and experimeete found.

4.1.2.3 Discussions

The models reviewed above are representative acellgfforts to predict the

mechanical properties of fabrics based on the lyidgrmesoscale yarn structure. They
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demonstrate the correlation between the fabric\oetsmand the mesoscale yarn
structures and indicate the effectiveness of theramechanical material modeling
technique for woven fabrics. Nevertheless, thesdeals lack generality due to their
over-simplified representations of yarn geometaied their treatment of yarn

interactions. In most of the models, a yarn is@spnted as either a straight line segment
or a curve along the centerline and the yarn iotera is defined simply by a spring
component. It is difficult to relate such modalgeal yarn structures and to identify
appropriate model parameters.

In the following, a more sophisticated mesoscala géructure is developed,
where realistic three-dimensional yarn geometnescansidered and the yarn
interactions are treated using general multi-bagtyibnal contact computations. And
the relationship between the mesoscale yarn irtterecand the macroscale fabric
behaviors is studied and presented by utilizing matational homogenization and unit

cell analysis techniques.

4.2 Computational homogenization

Computational homogenization theory based on tvabesasymptotic expansion
is introduced in this section. Since only two ssare considered in the discussion of the
two-scale expansion, the terminologpgicroscale andmicroscale will be adopted.
However, it should be advised that when appliestady fabrics mechanics the two
scales actually correspond to thacroscale fabrics and thenesoscale yarn structures,

respectively.

4.2.1 Two-scale expansion of a one-dimension linear
elasticity problem
Consider a one-dimensional linear elasticity probie a heterogeneous medium.
Assume that the heterogeneity is periodic and s2ofed on a small length scale

characterized by parametédr. The governing equation is
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d {E”( 5 39 (X)}y*(x) 0, (4.13)
dx

where E* and )’ denote the Young’s modulus and the body force aetsely. The

periodicity of the material heterogeneity admits

E*(x) = E*(x+nX) and y*(X) =y (x+nX), (4.14)
wheren is an arbitrary integer arXidenotes the period. Due to the discrepancy betwee
the length scales of the medium and the materiarbgeneity, a microscale measure is

usually introduced, which is defined as

y=x/A. (4.15)
All guantities can thus be described in terms af spatial length scales, the macroscale
characterized by and the microscale characterizedybySince the material properties

are macroscopically uniform and vary only on thensscale, one has

E'(x)=E"(x y)=E(y) and /' (x) =y (x,y) = p(y), (4.16)
where bothE(y) and y(y) areY- periodic, i.e.

E(y) = E(y+nY) and (y) = y(y +nY) (4.17)
with Y = X/A .
According to two-scale asymptotic expansion, tiepldicement field can be

written as follows

u’ (x) =u°(x, y) + Au'(x,y), (4.18)
whereu®(x,y) gives the macroscopic displacement field whiléx, y) describes the
oscillatory displacement on the microscale. Bottx,y) andu'(x,y) areY- periodic.
Substituting Equation (4.18) into (4.13) and cdileg the terms of the same scale, i.e. the
power of A, governing equations associated with differengikrscales are obtained.

For A%, one has

9 ou’(x,y) | _
ay{E(y) % } 0, (4.19)
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which indicates that

u’(x,y) =u’(x). (4.20)

For the terms associated with*, one has

0 ou’(x,y)  ou'(x,y) | _
Jolr e

By introducing the total microscale stragifix, y) and stresr(X, y), a microscale

problem is revealed, which is governed by the foilg equations

0o(x.y) _
oy -
a(x,y)=E(y)e(x,y) (4.22)

au’(x,y) N au*(x,y)
0x oy

0

(% y) =

The terms associated wittf yield

d au’(x,y)  ou'(x,y) 0 ou*(x,y) _
&[E(y)( PV oy H%—y{E(y) rw }y(y)—o- (4.23)

Integrating both sides over the perigdhe second term in Equation (4.23) vanishes due
to theY-periodicity of bothE(y) andu'(x,y), and the governing equations for the
macroscale problem are obtained:
dx(x)
dx
1
209=5 [otuydy(, (4.24)
Y

+y=0

=1
7= ], vndy

where Z(X) is the macroscale stress, which is determinedhé&yolume average of the
total microscale stress field given by (4220 macroscale strain is usually defined in a

similar way by the volume average of total micrdscdrain,
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1
E(X) =3 j £(X, y)dy. (4.25)
Y
As u'(x,y) isY-periodic, it can be verified that

ou’® _ du®
E(X) =—=— 4.26
()= ox  dx ' ( )

where the second equation is deduced from Equéti@0).

With the two-scale expansion, the original problerthe heterogeneous medium
given in (4.13) is decomposed into two separatélpros: Equation (4.24) for the
macroscale and Equation (4.22) for the microsc@le.the macroscale, homogenized
guantities independent of the microscale meagare employed and the material
heterogeneity thus becomes invisible. The reldbemmveen the macroscale strégx)
and strainE(x) is not explicitly given in (4.24). Instead, itdetermined by the
microscale problem (4.22), in which for a given mescale strairE(x) , the microscopic
displacement fieldi'(x, y) is solved and the total microscale stress fig(a, y) is then
integrated yielding the macroscopic stress respiisg.

Combining (4.20) with (4.21), one has

[ ()au (X, y)} di(y) du’ 4.27)
y  dx

which implies the following decomposition for theamoscale displacement

du® (x)

u(x,y) = x(y)——+¢(x) (4.28)

where x(y) is called the characteristic displacement. Aceaydo (4.27), the

characteristic displacement can be determined edgmt ofduo/dx by solving

i[E(y)(h d)((y)ﬂ =0. (4.29)
dy dy

Once x(y) is determined, according to (4.22nd (4.22), the total microscale stress is

given by
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ag(xy)= E(y)(1+ d); )(/y)j dud)((x) . (4.30)

The volume average of Equation (4.30) yields thiewwng homogenized macroscopic

constitutive relation

>(x) = EE(X), (4.31)

with the homogenized Young’s modulus

=_1 dx(y)
E=2 j E(y) (1+d—yjdy. (4.32)

4.2.2 General two-scale expansion
The two-scale expansion can be readily extendeeneral three-dimensional

elasticity problems. The equilibrium of a hetenogeus medium residing in a domain
Q' OR™ is governed by the following equations:

dive” + p’'b=0in Q’

o' M=t onrl, , (4.33)

u'=Tonr,
wherel", andl", denote the natural and essential boundaries,ctgply. The
superscriptd again indicates the representative dimensioneht#terogeneities.

Assume that the constitutive law of the heterogasenedium is elastic, one has

) _ow?
® T, (4.34)
8/1 = Dsu/l

wherew” (x,e”) is the stored energy arid’u” :[Du” +(Du”)T }/2 is the infinitesimal
strain.

By introducing a microscale measuwe= x/ /A, the displacement field can be
written as a two-scale expansian(x) =u®(x) + Au*(x,y). The problem can then be

decomposed into separate problems on two lengtassc®n the microscale, the
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problem is to determine the field variab{eﬁ(x,y),s(x,y),o(x Yy )} in a unit cellY such

that
div,e=0inY
oW (x,
(x,y) =¥ (4.35)
tS

g(x,y) = 05u® + Oju’
On the macroscale, a homogenized version of tiggnattiproblem (4.33) is constructed.

The macroscopic field variables z{r&o(x),E(x),Z(x)} and the governing equations are

as follows
div, X+pb=0inQ |, (4.36)

£(x) :é [ st y)av

1
P(X) == |. p(x,y)av
|Y| J-Y

Where|Y| denotes the volume of the unit cell. A macross#lain can be defined as the

volume average of the microscale strain field, i.e.
E(X) -1 j g(x,y)dV (4.37)
] |

It can be verified that since'(x,y) is Y-periodic the volume average Efyul vanishes

and

E(x) =05u®. (4.38)
The microscale problem (4.35) can be treated akdhegenized constitutive law
for the macroscale problem (4.36). Given a maapiscstrainE(x) , the microscopic
displacement’(x,y) and stress(x,y) are determined by solving (4.35). The volume
average of6(X,Y), i.e. the macroscopic stre¥¢x) , is then returned to the macroscale

problem, yielding the stress response to the apgli@in E(x).
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For linear elasticity, &-periodic linear elasticity tensa(y) exists and the

microscale constitutive relation given in Equat{drB5) can be written as

o(X,y)=c(y):&(X,y). (4.39)

And the microscale problem is thus to fitgberiodic displacement field*(x,y) such

that

0 Oue(x) , du(x.y) || _

dy, {qm(y)( ox + oy H 0, (4.40)
or

0 0u, (,y) | _ _ 9G4 (¥) aug (x)

a_yj{c'“"(y) Y }— oy, o (4.41)

Equation (4.41) implies that'(x,y) can be decoupled as follows

) oup (x)
U (X, y) = x (Y)a—+fk (x), (4.42)
X

where x,”(y) is the characteristic displacement associated twéhmacroscopic strain

componentauf,(x)/axq and it is determined by solving

a a)(kpq (y) - _ a("’lqu (y)
2 0] 250 s

The homogenized constitutive law, i.e. the volumerage of Equation (4.39), reads

Zij :C”.pquq, (4.44)
where
~ 1 ax(y)
¢ =—1| c 0.0 +-2X dv
1ipa |Y| .[Y ijki (y)( kp™lq ay|
1
5, "1 [,a,0xy)av (4.45)
ouy (x)

1
Ep :M.[ngq(x'y)dv = ox,
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For the volume average of the microscopic stiaito be equal to the imposed

macroscopic straiflu’, i.e.
E =iJ' g(x,y)dVv =iJ' (Diu0 + Djul)dv =
s ]

the volume integral of the gradient of the micrqacalisplacement has to vanish, i.e.

jY Osu'dV =0. (4.46)
The condition (4.46) is satisfied if'(x,y) is Y- periodic. However, if the periodic
boundary condition is not enforced on a unit ceif there are interior boundaries within
a unit cell, (4.46) may not be satisfied. Consalenit cell with an exterior boundary
dY° and an interior boundarY" and assume that periodic condition is enforced on

dY°. According to the divergence theorem, the volumiegral of the gradient of the

microscopic displacement can be written as follows
Ly [ O _ 1
[,Oudv =] —dv =] undS+| unds, (4.47)
¥ v ay, v oyt 1

where the first term on the right hand side varssihee to the periodic boundary

condition ondY® while the integral or@Y" is generally nonzero. The volume average of
the microscopic strain is thus equal to the sunonati the prescribed macroscopic

strain O0Su® and the contribution of the microscopic displacetreong the interior

boundary, i.e.

ij s(x,y)dv:D§u°+ij 1—1(ui1nj+niuj1)d8. (4.48)
] ] o 2
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4.3 Unit cell analysis of mesoscale yarn structures

4.3.1 Computational homogenization with
finite deformation

The computational homogenization approach presentdee previous section is
based on infinitesimal strain, which is not apgbieafor problems with finite deformation
and/or rotation. The yarn interaction problemdrtiles involves nonlinearities in both
kinematic relationships and material properties g it is important to include finite
deformation in the formulation of the problem. Fois purpose, the computational
homogenization approach is extended here to indhelénite deformation effect.

Consider a medium with periodic heterogeneitiea biie representative sizé.
The reference configuration of the heterogamousiumeds denoted byR* and a
material point is given byX* 0Q". A deformation is a one-to-one mappim(Q”)
and a spatial point is a result of the mappiig ¢ (XA). By introducing a microscale
Y =X/ A, the heterogeneous domad can be decomposed &x Y, whereQ is a
homogenized domain on the original length scade nnacroscale, andl represents the
microscale, where the heterogeneities are obserVeds usually called a unit cell and it
corresponds to a material pointéh. The two-scale expansion of the reference and

deformed configuration can be written, respectivaly

X' =X +AY, e

x*(X*) =x(X)+ Ay (X,Y). (4.49)
The displacement involves both a macro- and a mgad:

ut (X*)=u (X) +Au'(X,Y), (4.50)

whereu®(X)=x(X)-X andu*(X,Y)=y(X,Y)-Y(X). Assume that the

macroscopic deformation gradient is
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ax (X)

D(X)= : 4.51
(X)==3x (4.51)
the microscopic deformed configuration can be @emiths

y(X,Y)=@(X)IY +u (X,Y), (4.52)

whereu (X,Y) is a oscillatory displacement field due to theshegeneity within the

unit cell Y. The total microscopic displacement is
ut(X,Y)=[@(X)-1]0¥ +u" (X,Y). (4.53)

And the microscopic deformation gradient¥n reads

F=@(X)+F (X,Y), (4.54)
where

. _ou (X,Y)

FXY)==—— (4.55)

Sinceu” is Y- periodic, the volume integral ¢f over Y vanishes and the volume
average of the total deformation given in Equafib4) is equal to the macroscopic one,

i.e.
1 FdVv =@ 4.56
ML{ =®. (4.56)

However, if periodic boundary conditions are natgaribed on the exterior boundaries or
there exist interior boundaries, Equation (4.56<oot hold.
On the microscale, a periodic boundary value prokikesolved and the

governing equations are summarized below

DIVP=0inY
W(Y,F
P:M , (4.57)
oF

F=®(X)+F (X,Y)
whereP is the first Piola-Kirchhoff stress and hyperelast is assumed for the

constitutive law of the yarns. Equation (4.57) litily defines the homogenized
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macroscopic constitutive relationship. The compameprocedure is similar to that of
the infinitesimal strain case. Given a macroscepiain ®, Equation (4.57) is solved for
the microscopic displacemeunt (X,Y) , from which the deformatiof” and the stresB
are calculated. And the volume average of thesstirethe unit cell gives the
macroscopic stress in responsalto As a symmetrical stress measure is usually

preferred, the averaged second Piola-Kirchhoffssttensor is adopted
S(X) :ij F'Pdv . (4.58)
]

The conjugate strain measure, as proved in [62fhesnacroscopic Green-Lagrangian

strain, which is defined by

E(X) 2%(<I)T(I)—l). (4.59)

4.3.2 Finite element implementation of the unit cel
problem
Given a macroscopic deformation grad@ntthe weak form statement of (4.57)

is to find u” (YY) such that for any-periodic variationdu’

jY DIV PBu'dV =0 (4.60)
where

P:M andF :(I)+6L.
oF oYy

Applying the divergence theorem, (4.60) is rewnitées

[,P:0(ou’)av =0 or L{Pnaaifde, (4.61)
|

where the boundary integral terms vanish due t@ér®dicity and/or traction-free
boundary conditions. Applying a finite elementadetization, the displacement and its

variation can be expressed as
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u =N,d, anddu =N,dd,, (4.62)
where N, andd, denote nodal shape functions and displacememecésely. Since
Equation (4.60) must hold for all admissible valoé®u’, it leads to a set of discrete

nodal force balance equations

[,BTP(d)dv =0, (4.63)
whereB are nodal strain displacement matrices with tbemponents given by
B, =0N,/dY,. From Equation (4.63) the nodal displacementtEadetermined. The
periodicity of u™ is enforced by requiring the displacements ofesponding nodes on
opposite faces of the unit cell to be the samethisccan be achieved by a nodal
enslavement procedure. In the unit cell analysisrgin Equation (4.63), loading occurs

through a prescribed macroscopic deformadwrand it is applied by a predictor

displacement fieldi (YY) =[® -1] Y in the finite element computations.

4.3.3 Unit cell analysis of mesoscale yarn struegur

Computational homogenization provides a systenfi@oework to study the
material properties of heterogeneous media. dt@slthe macroscopic behaviors of a
medium to its microscale heterogeneities and mealesphenomena. In this section, the
computational homogenization approach just desgnbeapplied to investigate the
macroscale stress-strain characteristics of woabnds due to the mesoscale yarn
interactions. A unit cell is constructed to captarrepresentative yarn structure and it is
loaded by prescribed macroscopic strains. Thd tefarmation and stress in the unit
cell are determined by solving the unit cell anaslysoblem. The relationship between
the prescribed deformation and the volume averaggecstress over the unit cell is
interpreted as the macroscopic constitutive ratatigp of the woven fabric.

Various weave patterns exist and the basic onethaptain, twill andsatin
weaves (Fig.18). Plain weave is the simplest patiehere the weave is simply over-one

and under-one for each yarn, and a cross is foah#ee intersection of a warp yarn and



10C

a weft yarn. Twill weave has an over-two and urger pattern. Satin weave uses as
few interlaces as possible and usually forms ad@bsicture. The fabric properties vary
significantly for different weave patterns. Famglicity, the plain weave is considered
in this study to illustrate the homogenization agmwh. However, the method presented

here can be readily applied to other patterns lmpsimg appropriate unit cells.
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Figure 18: Basic weave patterns

For plain weave, the choice of a unit cell thakigresentative of the periodic yarn
structure is not unique. As sketched in Fig.1Bare are multiple options in choosing a
unit cell. Option A has four complete yarns ancludes a full period for each yarn. Itis
identically repeated in space. Option B, which guarter of the structure of option A,
includes two yarns at a cross point and is repeatéesymmetrically about the plane.
Option C covers half a period and includes fouf ains. The choice of unit cells
depends on the deformation investigated and thsideration of the computational cost
involved. As it involves less computational expergption B is adopted in most
computations to be presented. And a comparisomdaet option B and A is provided as

well. Pictures of the yarn structures are showfig19b and 19c.
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Figure 19: Multiple choices of unit cells

A large amount of voids exists in the mesoscalectires of woven fabrics and
these voids make a sound definition of a unit geite challenging. Considering the yarn
structure shown in Fig.19b, if the unit cell isidetd as the bounding box and all of the
contents therein, the cell boundary consists df Inoaterial boundaries and void
boundaries. It is difficult to enforce appropriés@undary conditions on voids and to
keep track of the change of the void configuraasrthe cell is loaded. In this study
therefore, some assumptions are adopted to adtitesssue. First, the homogenized
constitutive relationship is formulated using thegtangian description and a bounding
box is defined at the initial configuration. Basmdthis, a volume fraction of yarns with

respect to the whole cell can be determined. Taeroscopic second Piola-Kirchhoff
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stress, i.e. the volume average of the second-Riothhoff stress in the unit cell as
given in Equation (4.58), can be calculated a®¥edl

S= é jYS F Pav (4.64)
where Y, denotes the domain occupied by yarns in the nebereonfiguration ang is
yarn volume fraction in the reference configuratios.

Y

& TR (4.65)

For the volume integral of the microscopic stra@id to vanish, periodic
boundary conditions need to be specified on theashi. To avoid the complication of
enforcing the boundary conditions on voids, pegigiis only specified on the end faces
of yarns. In addition, since the in-plane behavie studied, the top and bottom faces
are assumed to be traction-free. These boundaditeans require an extra surface
integration for the microscopic strain field to \&nas discussed in (4.48). Itis
interesting to notice that for the surface integifahe microscopic strain can yield the
strain through the thickness. In this study, sioly the in-plane properties are
investigated, the prescribed macroscopic deformafois used and the surface integral

is skipped.

4.3.4 Transversely isotropic material model
Each yarn itself possesses a microscopic struattrere long continuous
individual fibers are loosely bundled togetherdoi a single continuous element. The
mechanical properties of a yarn are determinedhbyptoperties of the fibers and their
mechanical interactions. While this motivates & naultiscale modeling problem,
which relates the microscopic fiber behaviors ®akierall yarn properties, such an
approach is not pursued here due to the limitasidhe scope of this study. Instead,

transversely isotropic hyperelastic constitutivedels are used to model the yarns.
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The yarn exhibits isotropic properties about thenyangitudinal axis and the
transversely isotropic hyperelastic model of Baared Burton [60] is adopted to describe
the constitutive relation. The strain energy fumtis defined as a combination of an

isotropic component and a transversely isotropromanent.
W (C)=y™ +y", (4.66)
whereC =F'F is the right Cauchy-Green deformation tensor. iSb&opic part is

assumed to be Neo-Hookean and is defined as
iso 1 1 2
W :E/J(Il—B)—,uan+—2/](J—1) , (4.67)

wherel, =tr(C) and J =det(F) =| de(C)T/z. Assume that the principal material
direction in reference configuration is denotedvbygtorA, the strain energy of the

transversely isotropic part is defined as

z//“=[a+ﬂan+y(|4—1)](|4—1)—%a(|5—1) (4.68)
with 1, =A[CA andl,=A[C?A.
The second Piola-Kirchhoff stresS=2d/0C, has contributions from both the

isotropic component and the transversely isotropie and they read as
S® = u(1-Cc?)+A3(3-1)C,

' =B(1,~)C*+2a+BInI+2(l,-)]AOA (4.69)
-a(AOCA+CATA).

The Lagrangian elasticity tensr=20S/0C is deduced as
D¥=2[u-A3(I-1)]|G+AJ(2-)c™*OC™

D' =8yADADATA-2A (4.70)
+#2B|ADAOC*+C*'OADA~(1,-1)G],

where

AIJKL = A AJ]K + A.] AJIK and GIJKL = (C:I_K:LC:J_L:L + CI_L]C.]_Kl)/Z ' (471)
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The Kirchhoff stress =FSF' and the Eulerian elasticity tenso= FFDF'F' are
obtained by pushing forward the associated matguahtities given in Equations (4.69)

and (4.70). The results are summarized as follows

u(b-1)+AJ(J-1)1
™ =p(1,-)1+a+BInI+2(l,-)|ala (4.72)
-a(aOba+bala),

Tiso

and

c®=2[u-A3(3-1)]g+AJ(2-9)101
c' =8yadalala-2za (4.73)
+2f[a0a01+10a0a~(l,-1)g],
wherea = FA is the principal material direction in the deformamhfiguration; b = FF"
is the left Cauchy-Green deformation tensariand g are the push-forward of the tensor

A andG and they are given component-wise as

aijkl = aialbjk +aja|b|k and gijkl = (5ik5jl +5||51k)/2 (474)

4.3.5 Results

The results of unit cell analyses based on the s@utture shown in Fig.21b are
compiled in this section. The in-plane properties studied under prescribed
macroscopic deformation gradients associated viekidd extension, uniaxial extension
and in-plane shear. The local stress fields areraened by solving the unit cell problem
in Equation (4.63) and the macroscopic stressesldaeened by Equation (4.64). Contact
constraints are enforced between the two yarnghentbrmulation discussed in Section
3.4 is utilized.

In this unit cell model, the centerline of a yasireépresented as a half wave of a
sinusoidal curve and two parameters are neededheédalf period and the amplitude.

As introduced by Kawabata et al [46], these twapwaaters can be identified using the
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yarn density and the crimp ratio, two measuresctlyéaken on a given fabric specimen.
The parameters of a warp yarn are usually diffefremb those of a weft yarn, which is
exactly the origin of fabrics anisotropies. Fog tomputation presented here, however,
the parameters are first assumed to be identicdidth yarns, and this case herein is
referred to aa balanced weave. The cross section of a yarn is assumed to leHlipse
with a radius ratio of 1.5.

The two yarns are initially orthogonal and aligeth the X- andY- axis of a
global Cartesian coordinate system. The macrosagdormation is specified with
respect to the global coordinate system. For el@napuniaxial extension alongaxis
is specified as a load case whe&pg >1.0 andd,, = 1.(. Periodic boundary conditions
are specified on the pair of end faces of each gadrigid body motions are precluded
by applying appropriate essential boundary conatioThe volume fraction defined in
Equation (4.65) is assumed to pe=0.4. And the homogenized relations between the
macroscale Green-Lagrangian strain (4.59) and #rascale second Piola-Kirchhoff

stress (4.58) are presented.

4.3.5.1 Isotropic yarns

Instead of assuming transverse isotropy, yarnfirastanodeled as an isotropic
material. The parameters associated with the\tesssly isotropic strain energy in
Equation (4.68) are set to zeros and the isotnmaiterial parameters in Equation (4.67)
are chosen ad =48.825Pa and ¢ = 32.56Pa, which in an infinitesimal case recovers
a Young's modulusE = 84.€Pa, the value of Kevldt KM2 fibers published by
Cheng and Chen [61], and a Poisson’s rato0.3.

For biaxial extension, a macroscopic deformaiign,, ®,,=1.2) is specified
and the deformed configuration is shown Fig.20br thiaxial extension, the unit cell is
stretched alon¥-axis with a macroscopic deformatioh, =1.2 and®,, =1.0. The

deformed configuration is given in Fig.20c. Thertugenized stress-strain relation is
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almost linear for both cases (Fig.21). It is dtsend thatS, are almost identical for
both biaxial- and uniaxial- extension and tisa} is negligible compared t§, in
uniaxial extension. These facts indicate thatehelittle interaction between the two
yarns and that the major responses in the ung eedl to decrimp the individual yarns.
These observations are quite different from theeetgdl responses of woven fabrics and
the reason is due to the isotropic material modglleyed, where a strong shear
resistance prevents the decrimping.

For in-plane shear (Fig.20d), the prescribed maoqpis deformation is
®, =, =0.2. Asmall biaxial pre-stretching is applied toadsish a firm contact
between the two yarns as the shear deformationa®e The macroscopic shear stress
is plotted against the deformation in Fig.22 and abserved tha§, spikes as shear

deformation increases, i.e. the shear locking.

Figure 20: Undeformed and deformed configuratidne loalanced
weave with isotropic yarns
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4.3.5.2 Transversely isotropic yarns

With the problems observed for the isotropic yamsansversely isotropic

material model is tested here. The material pararma@re chosen as follows:

A=0.4457,11= 051540 = 0.27144= 0.06548 gnd  1Q6Ra),

which are deduced from the mechanical propertiesfige Kevldt KM2 fiber given in
[61] with its axial shear stiffness further reducekthe assumption is that as a fiber
bundle, a yarn has lower shear stiffness thanglesfiber due to the sliding amongst
fibers. This assumption may need further invesitigaas the friction and/or the twisting
in fibers may stiffen the yarn. However, this geparameters is adopted as a test
example to show the effect of the material anigntrio yarns on the overall fabric
properties. The deformations considered includgibl extension, uniaxial extension,

and in-plane shear. The deformed configuratioasshown in Fig.23.

(c) Uniaxial extension (d) In-plane shear

Figure 23: Undeformed and deformed configuratidne loalanced
weave with transversely isotropic yarns



The homogenized macroscopic stress and strainaedain biaxial/uniaxial
extensions are shown in Fig.24. In addition, tihess-strain curve without considering
the yarn contact is plotted as well. Stiffeningl amonlinearity are clearly observed in the
stress-strain curves. Due to the low shear ssffpthe yarns can be decrimped with little
effort, which corresponds to the initial compliai®crimping response. When firm yarn
contact is established, stiffening occurs. In#gS,, for the uniaxial extension is
significant compared to that in Fig.21, which iratis that for the transversely isotropic

yarns, the crossing yarn is stretched as the codéaelops.
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Figure 24:8le and S,, vs. E; for biaxial and uniaxial extension
of a balanced weave with transversely isotropiaigar

The unit cell is also loaded by biaxial compressi&ince no yarn contact develops as
the unit cell deforms, compliant stress responsdserved in biaxial compression.
Fig.25 shows the biaxial extension-compressiorsststrain relation. Stiffening due to

the shear locking is found in the stress-straiati@h of in-plane shear (Fig.26).
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4.3.5.3 Full-period unit cell model

The previous computations are based the quartecethimodel shown in
Fig.19c. The model is anti-symmetrical about thieric plane and does not represent a
repeating pattern of the mesoscale yarn structyr@agy. In this subsection, a full unit
cell model as shown in Fig.19b is constructed &ednbmogenization results obtained

with the full model are then compared with thoséhef quarter model.

0.30 —— biaxial quarter model
' —=a— biaxial full model
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_.0.20
© & )
o 2
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Figure 27: Comparing, vs. E, for the quarter and the full unit cell models
in biaxial and uniaxial extensions

The stress-strain relations for biaxial- and urabextension for both models are
plotted in Fig.27, and it is found that the respamnsf the full-period unit cell are more
compliant compared to those of the quarter mo@ele reason is due to the boundary
conditions applied here. In both unit cell modétg local vertical displacements on the
end faces of a yarn are restricted. The crossoseat the yarn inflection point in the full

model is free to move vertically. However, as ad ace, the section is restricted in the
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guarter model. Due to this reason, the quarteranisdver-restricted compared to the
full model and thus exhibits stiffer responses. even more pronounced difference is
observed in in-plane shear (Fig.28), where two @edpcular yarns tend to slide
vertically as they are jam against each other vithershear deformation develops.
Stronger resistance is thus exerted in the quarntiéicell model as the vertical
displacement is more restricted than in the fuit aell model.

The deformed configurations of the full unit cetider the prescribed
macroscopic strains are shown in Fig.29, where hgibrspective view and a top view

are presented for each load case. In Fig.29enitoe found that the yarns warp under the

application of contact tractions.
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Figure 28: Comparing,, vs. E, for the quarter and the full
unit cell models in in-plane shear
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(a) Biaxial extension

(b) Uniaxial extension

(c) In-plane shear

Figure 29: Deformed configurations of the full uogl model

4.3.5.4 Mesh convergence

The last study is on the mesh convergence of tiiecathmodel. A model with

finer mesh (Fig.30) is constructed and the stréssasrelations obtained with the fine

It is found that

model are compared with those of the coarse modelg.32 and Fig.33.
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the responses obtained with the finer mesh arergiystiffer. This can be explained by
the fact that more potential penetrations are iledtwith a finer mesh, which leads to a
larger contribution from contact tractions. Onelgem with the current collision
detection algorithm is that the edge-to-edge patietr is not checked. As shown in
Fig.31, the edge-to-edge penetration occurs edpeaiaen a coarse mesh is employed

and a fine mesh does help in identifying the pextiein.

(a) The coarse mesh (b) The fine mesh

—

Figure 30: The unit cell models with different mesdnsities

Figure 31: Edge-to-edge penetration in a coardaseimesh
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Figure 32: Comparingy, vs. E,; for unit cell models of different
mesh densities in biaxial and uniaxial extensions
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Figure 33: Comparing, vs. E,, for unit cell models of different
mesh densities in in-plane shear
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4.3.6 Discussion

The examples presented above demonstrate theiedfeess of the computational
homogenization and unit cell analysis approachudysng the material properties of
woven fabrics. Given yarn properties and the gurhtion of a yarn structure, the unit
cell can predict the overall fabric properties.isléapability can be exploited when novel
fabrics are to be designed, where various comlunatof the design parameters can be
tested and identified. Compared to the early ganncture models, the unit cell model
described here captures the three-dimensional gepofeyarns and does not require any
extra yarn interaction assumption, which usualtyoduces extra parameters and most
likely more uncertainties as well.

A major uncertainty of the unit cell model is thery properties. In this study,
yarns are modeled as a transversely isotropic mbhterd the parameters are simply
estimated from those of a single fiber. Howevera@omplex structure with microscopic
constituent fibers, a yarn exhibits propertiesatight from those of a single fiber. To
realistically describe the material properties gaan, the same computational
homogenization approach can be adopted. On W l@ yarn is considered as a
structure composed of interacting fibers on micatsand the yarn properties are
determined by homogenizing the microscopic respohngiee fiber bundles.

As presented in the examples, unit cell analygklgihomogenized stress and
strain relations. However, these relations mayoeodirectly applicable to the
macroscopic problems due to the limitations of iadé& mechanism to incorporate such
relations. For example, in the clothing simulatiba macroscopic problems are
essentially the time integration of a dynamic sh@dldel, which currently admits
hyperelastic constitutive laws. As a result, tbenbgenized constitutive relations based
on the unit cell analysis can not be applied todbéhing simulation unless they are cast
as a strain energy function definition. For compieaterials, such as woven fabrics, it

can be challenging to find a single yet comprehensiathematical form for the energy



function definition, which includes all complex nossale yarn interactions and their
couplings with various load conditions. Such dortthas been made by Kim [62], who
constructed a transversely isotropic hyperelastdehto describe homogenized yarn
properties based on unit cell analysis of fibeks.observed in the paper, as the strain
increases the hyperelastic model and the homogemazasults deviate.

An alternative approach is multiscale modelingthRathan constructing a
material model and fitting homogenization resudt$hte model, the unit cell analysis is
conducted when the constitutive relation is neemtechacroscale. The idea is to skip the
closed form of the stress-strain relation but tostdt the unit cell whenever the
constitutive relation is needed. An outline ofls@n approach is described in [56]. One
challenge is to obtain the sensitivity of the w@ll problem, which may be needed when
constructing the tangent operator on macroscglep@dure similar to derive consistent
tangent operators for return mapping algorithmsomputational plasticity as discussed

by Simo and Hughes in [63].
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CHAPTER 5
CLOTHING-WEARER INTERACTION STUDY

In this chapter, unilateral interactions betweearilethg and a wearer are studied.
The clothing is modeled by the macroscale sheti¢abhodel developed in Chapter 2 and
the contact constraints between the clothing aadthman body are enforced using the
explicit contact algorithm introduced in ChapterBBuman motions are prescribed and
the contact forces that clothing exerts on the baré@ycalculated so that the effects of
these contact forces can be related to human peaifaze measures.

The moment of all contact forces about joint centae spatially integrated to
obtained instantaneous joint torques. Althoughadire torque can be readily determined
by spatial integral of the torques exerted by il contact forces, care must be taken
to determine the correct contributing area foneegijoint. For example, whether
clothing contact forces on a forearm contributa tneaningful torque about the shoulder
joint is an issue to be studied. This problemegdnd the scope of this study, however, it
is not investigated here. A simple assumptionzetl in the following study is that
clothing contact forces on a given body segmeny oohtribute resisting torque to the
joints directly connected to the segment.

Two problems are studied in this chapter. Onbassteeve-arm interaction
problem, where the elbow flexing motion at an atathed in a sleeve is considered.
Various parameters of the sleeve are investigatddle changes in the computed
resistance torques about the elbow are comparkd.other problem involves a fairly
complicated human motion, in which the lower botbtleed in a pants model walks and
then steps over a two-foot tall obstacle. The asexbtime histories of the resistance

torques exerted by the clothing about the righekioe two types of pants are compared.



11¢€

5.1 Human body representation and motion descriptio

As discussed in Chapter 3, general mesh-to-medébionldetection can be
expensive for large scale problems. In clothing#eeinteraction studies, a fine clothing
mesh is usually employed to capture the flexiblerabteristics of fabrics. If the human
body surface were to be modeled with a fine polyomesh, the cost of crude mesh-to-
mesh collision detection would be very high. Fos reason, the human body surface is
grossly approximated herein by an assembly ofsaigs, with which collision detection
can be readily performed. An example is shownign34, where the lower body is
represented by eight ellipsoids. For further sifigaition, the ellipsoids (the human body
surface) are assumed to be rigid such that sudefmmation, including that incurred by
clothing interaction, is neglected. This assumpadows the contact problem to be

solved as Signorini’s problem as discussed in Gt

Figure 34: A lower-body walking model using ellipd®

In the current study, the wearer’s motion is fydhgscribed and does not change
in response to clothing resistance forces. Depgnaln its complexity, the motion is
specified using different kinematics descriptiodssimple motion, such as flexing the

elbow of an arm, can be specified as a time-higiangtion of the rotation angle.
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Complex motions, such as the walking shown in Higt®wever, are described by
leveraging the motion capture techniques. An aptieotion capture system is utilized
here and a human subject, wearing a special mo#pture suit with reflective markers
attached, is asked to perform given motions. Trhe history of each marker’s position
is recorded and the captured motion is re-congduby the system on the subject’s
digital counterpart, a predefined skeleton modéleng the position history of each joint
is calculated.

For the clothing-wearer study, the motion basetherskeleton model needs to be
further mapped to the ellipsoidal human model. @gp for each segment, the position
histories of two joints, andJ,, and an auxiliary markévl are known, the centroid and

the orientation basis of the ellipsoid at any insta time are then constructed as follows:

Center: x° =%(J1+J2)

Orientations: (5.1)
3,73, . (M) M@ fe

DT R v v Ty Y

A schematic of the motion reconstruction is showfig.35.

D

Figure 35: Re-constructing the motion of each stlig using motion capture data that
records for each ellipsoid the position historiepaintsJ;, J,, andM
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5.2 Garment modeling

Clothing or garment is generally constructed byisgwieces of fabric patches
together. The properties of a garment depend migtan the fabric properties but also
on the structural factors, such as seams, stitwhe@snultiple fabric plies etc. In this
study, these structural factors are neglectedstiiches or seams are modeled and a
garment is assumed to be a uniform system of gsdercs. Multiple fabric meshes are
simply combined to create a single mesh for a gatmmedel. The sleeve studied in
Section 5.3 is modeled as a mesh of a cylindrida¢t While the pants in Section 5.4 are

constructed by combining four rectangular meshesgappropriate seam lines.

5.3 Arm-sleeve interaction study

In this problem, the interaction between an armmeggnted by two rigid
ellipsoids and a cotton sleeve is studied. Thdonatonsidered is to flex the forearm
about the elbow joint while keeping the upper ared. The torque exerted by the
sleeve about the elbow joint is calculated. Tleew is modeled as a cylindrical tube
with length L =0.5m, radiusR =0.06m, and thicknes$ =1mm. Boundary conditions
are specified to restrain the motion of fabric r@deound the shoulder. The upper- and
fore-arms are modeled as two ellipsoids, one firespace and the other rotating about
the joint with a constant angular velocity. Th&ataotation angle i$7 before severe
clothing self-contact occurs. The friction betwéla sleeve and the body surface is
considered and a Coulomb friction coefficigmt= 0.1 is assumed. The material
properties used in the computation are as folloXisung’s modulus in warp and weft

directionsE =1.2MPa, shear modulu§& = OMPa, and mass density = 436Kg /m’.

5.3.1 Convergence study
The convergence behavior of the model in termsegmrefinement is
investigated. Four models with varying mesh déssitFig.36) are constructed and then

resistance torque vs. rotation angle curves am@mdd (Fig.37). It is found that the



curves deviate slightly but follow the similar tceaf reduced resistance with increasing
refinement. A comparison of the computed deforameti(Fig.38) shows that finer
meshes capture local fabric buckling, which mayoumur on the coarser meshes. The
finding of increasing localized fabric buckling Wwiilncreasing mesh refinement indicates
the instability of the system. The same convergestady was conducted with a higher
friction coefficient £ = 0.5, and better convergence behavior is observed3®ig.As
shown in the deformed configurations (Fig.40), leigfriction between the arm and the
sleeve prevents the sleeve from falling down oh&ealbow joint and thus reduces the
amount of wrinkling that occurs at the elbow. A qmarison of Fig.37 and Fig.39
indicates that clothing resistance torques increasg significantly with higher friction

between the arm and sleeve.

Mesh Il: 15x20elements

G
..l.. LT

Mesh lll: 20x26 elements Mesh IV: 30x3%lements

Figure 36: Sleeve models of increasing mesh refergrfor convergence study
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Figure 37: Computed clothing resistance torquesiathe elbow joint for a crimped
cotton sleeve with varying mesh refinement; the IGmb friction coefficient
between arm and sleeve was=0.1

Figure 38: lllustration of localized clothing builg in the elbow joint with increasing
mesh refinement (low frictions = 0.1); Meshes are shown at elbow flexion
anglea =37



124

—o— 10x13
1.6 —5—15x20
—a—20x26
14 —e—30x39 J
1.2
~ 1
€
=
© 08
>
o
(@]
F o6
0.4
0.2
0 T T T T T
0 10 20 30 40 50 60

Rot. Angle (Deg)

Figure 39: Computed clothing resistance torquesiaihe elbow joint for a crimped
cotton sleeve with varying mesh refinement; Couldndtion coefficient
between arm and sleeve was= 0.5

;'; L7

Figure 40: Local buckling is less sensitive to medinement for higher arm-sleeve
friction coefficienty = 0.5. Meshes are shown at elbow flexion ange37 .
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5.3.2 Friction

The friction between clothing and human body swfacan important factor
affecting the interaction of the two. For a sleevadel with a well-refined mesh, the low
friction case (=0.1) is compared with a high friction casg € 0.5). It is found once
again that in the low friction case the sleevesstipwn as the forearm rotates upward.
Alternatively, in the high friction case, the sleadoes not slide down the forearm.
Snapshots of the sleeve deformation for both thedod high friction cases are shown in
Fig.41 at two elbow flexion angles; =37 anda =57 . It is noted once again that
higher friction between the arm and sleeve traasl&d higher clothing resistance torque

as indicated in Fig.42.

Figure 41: Sleeve deformations for different focticoefficients
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Figure 42: Clothing joint resistance torque exeftedlifferent
surface friction coefficients

5.3.3 Effect of fit
To briefly study the effect of clothing fit on resince, the radius of the sleeve
tube is increased t& =0.07m from R=0.06m while the dimensions of the ellipsoidal
arms remain the same. The resisting torque exbstélde looser-fitting sleeve (Fig.43a)
is compared with that of the original tighter-fiiy sleeve (Fig.43b). For both fits, a skin
surface friction coefficienjz = 0.5 is used. The computed resisting torque exertetthdy
looser-fitting sleeve (Fig.44) is significantly gethan that of the tighter-fitting sleeve for

elbow flexion angles greater th&® .
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(a) Loose fit:R=0.07m (b) Tight fit: R=0.06m

Figure 43: Deformed configurations of sleeves wifferent radii
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Figure 44: Computed resisting torques exerted égvas with different radii; the sleeve
is compliant crimped cotton, and the skin frictmyefficient is = 0.5.
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5.3.4 Effect of fabric thickness

Fabric thickness is another factor that can aff&athing-wearer interaction. A
thicker fabric has greater mass and larger stifnddembrane stiffness increases in
proportion to the fabric thickness, while the bewgdstiffness increases in proportion to
the thickness cubed. Here, the thickness of #wvsl fabric is doubled tb= n&n and
the joint torque is compared with the original cageeret = Iinm. All other properties
remain the same, and a surface friction coefficignt0.5 is assumed. The computed
torque resistance (Fig.45) of the thicker fabrioogsghly double that of the thinner fabric,

which indicates that membrane rather than bendagior of the sleeve is dominant.

3 ——A—t=1lmm
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Figure 45: Comparison of sleeve torque resistanttedifferent fabric thickness

5.3.5 Effect of fabric material properties
The last variation of the arm-sleeve problem exaahinere focuses on the effect

of fabric material properties. Three sets of matgroperties are examined, roughly



corresponding to (1) a crimped cotton sleeve afkhess 1mm; (ll) a taut de-crimped
cotton fabric of thickness 1mm; and (lll) a de-goea plain-weave Kevlar fabric of
thickness 1mm.

Setl: E=1MMPa, p= 436g m’

Setll: E= 350Pa 0= 43Bg i’
Setlll: E=7.55Pa, p= 708g W’

The shear stiffness of fabrics significantly aféettteir drapeability. For all of the three
material assumptions considered here, the shéfaess of the fabric in each case is
taken as 1/20Dof the Young's modulus in the yarn directions.wLsurface friction

4 =0.1is assumed for all of the computations. The caexgbresistance torques for the

three different sleeve materials are presentedg@&.
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ﬂ
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Figure 46: Comparison of sleeve torque resistaocey/pes of fabrics

A stiff response is observed for both material Heasd Ill, and then a compliant

response follows after the rotation angle reachesiel5 . By tracking the deformation
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of the sleeve, it is found that before reachingmow flexion anglea =15 the sleeve
response is governed by bending; after that, #evslliterally slides down along the
forearm. As would be expected, it is also obsethatithe resistance torque exerted by

each sleeve is roughly proportional to the stiffnesthe material.

5.4 Interaction of pants with walking/stepping legs

In this problem, a human subject walked four stjdeth the third involving
stepping over an obstacle i height. The motion of this human was captwréth an
array of eight infrared VICON cameras, and the or@iwere then mapped onto the
assemblage of ellipsoids (Fig.34) to make them wallpair of pants was then placed
onto the human model (Fig.47) in the following sexge: (a) the feet of the human
model were removed; (b) the pants of the human ineeke pulled up over the legs and
pelvis; (c) the feet of the human model were themtared; and (d) the effect of a belt was
created by tensioning the fabric at the waistliMéith the garment on the human model,
a simulation of the interaction between the pantkthe lower body walking and
crossing the obstacle was then undertaken (Fig.#®p sets of pants were modeled,
both made of compliant, crimped cotton. The foair had a thickness of 1mm while the
second had a thickness of 2mm.

The resistance that the pants models exert oregfseds they undergo their fully
prescribed motions was calculated by taking theamriorces exerted by the clothing on
the legs at each instant of the simulations andptimg their instantaneous moment
magnitude about the knees. Such computationsharersin Fig.49 for two pairs of
cotton pants which are identical except for theitathickness. Not surprisingly, the
thicker pants exert greater resistance torquesdbahe pants with the thinner fabric.
The computed torques about the right knee are tligdysto the pants at the knee level
and below. Contributions of the upper pant legh&resistance have been neglected

here.
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Figure 47: Sequence for the human model to donraoppants

500 400 300 200 1

900 800 700 600

Figure 48: Simulation of pants interacting with Embody striding and then stepping
over an obstacle. Numbers below each figure inditee frame number of
the simulation (c.f. Fig.49)
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Figure 49: Computed resistance torques exerted/byairs of cotton pants of different
fabric thicknesses about the right knee
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CHAPTER 6
SUMMARY AND DISCUSSION

6.1 Summary

6.1.1 Macroscale

A novel computational framework that allows quanétion of the mechanical
interactions between clothing and wearers is d@eslo In the framework, clothing is
modeled using geometrically nonlinear continuumeshegated shell finite element
methods and the wearer is represented by a digitabn model with simplified
ellipsoidal surface definition and motion captuneeknatics description. The contact
tractions exerted by clothing on the human modelcafculated as a fundamental
guantity, based on which objective performance mnesscan be derived to quantify the
impact clothing imposes on the wearer. Sampleesuate presented, where the effects
of various factors (fabric thickness and propertigsand skin friction etc.) on the joint
torques exerted by clothing are investigated, edd studies demonstrate the feasibility
of the proposed computational framework. This haeeputational facility allows the
clothing-wearer interactions to be studied basedlpective quantities and enables better
understanding of the impact that clothing may ingos wearers. With such
understanding, better designs of protective clgtlsiystems with less performance
restrictions can be obtained.

In developing the computational framework, someytstanding issues in solid
mechanics are addressed. As thin and flexible apéalorics exhibit highly unstable
mechanical behaviors and undergo arbitrarily lalgl®rmations, which pose a challenge
on the robustness of the computational modelhigwork, a geometrically nonlinear
shell element based on dynamic formulation is aetbpd address this issue and it is
proven to be effective in capturing the large falieformations with adequate

robustness. Both implicit and explicit solutiotnemes are implemented and Rayleigh
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damping is included to simulate the dissipatiothemmodel. The clothing-wearer
contact is formulated as a Signorini’s problem bguaming rigid human body surfaces
with prescribed kinematics and the problem is sl an explicit Lagrange multiplier
method. The expense for collision detection isimired by using ellipsoidal surface

definitions.

6.1.2 Mesoscale

Woven fabrics exhibit complex material behaviorst thary in response to
changes in different loading conditions. It isltdraging to develop a comprehensive
constitutive model that captures all these compki In this work, the relation between
the macroscopic fabric properties and the mesogeatestructures are studied by
applying computational homogenization techniques.

A novel unit cell model with detailed three-dimessiyarn geometries and
general multi-body contact algorithm is developéuthis model, yarns are modeled as
transversely isotropic media and their interactiaresformulated as a multi-body
frictional contact problem, which is solved by argmented Lagrange multiplier method.
Compared to previous efforts, the proposed modé&eshao simplifications on the yarn
geometries and the yarn interactions, and it takesaccount various combinations of
loading conditions. The local response of the yiracture unit cell model is solved for
a given macroscopic strain and the macroscopissstseobtained by homogenizing the
total stress in the mesoscale model. It is dematest that the proposed unit cell model
captures typical features of fabric behaviors.

The proposed unit cell model of mesoscale yarrcgiras provides a useful
numerical tool for studying fabric properties. Quared to traditional experimental
approaches, which require fabrication of testinggas, the unit cell analysis can be
applied to test various combinations of factors tam affect the overall fabric properties

and makes itself a rapid prototyping tool for falatesigns.
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6.2 Discussion
The main effort of this research is the construcbbthe proposed computational
clothing modeling framework. The framework inclsdeur major components: a
macroscale fabric model, a mesoscale fabric/mat@oael, a contact computation
component, and a digital human model. Simplifmatssumptions have been
introduced when these components are developetheagtated. In this section, these

assumptions are revisited and future improvememthiem are discussed as well.

6.2.1 Macroscale fabric modeling

The macroscale fabric model is based on the cammndegenerated shell theory,
where the bending behavior is obtained by numenntagration of stresses and strains
through the shell thickness. This assumption lisl\far a continuum, while for fabrics,
which possess material discontinuities throughthinekness, it may need to be revised.
A resultant shell formulation may be more apprdprta address this issue.

Another assumption that deserves further investigas the constitutive model.
Currently a linear relation between the secondaPikatchhoff stress and the Green
Lagrange strain, i.e. St. Venant model, is followdthis over-simplifies the material
responses in fabrics even in the small strain raviggre complex yarn interactions on the
mesoscale lead to highly nonlinear behaviors asodstrated in Chapter 4. This topic is
closely related to the multiscale modeling appreaatiscussed in the following

subsection.

6.2.2 Multiscale modeling approaches
The proposed unit cell analysis of mesoscale yauctsire model is currently
independent of the macroscale fabric model andhéimeogenized stress-strain relation is
not incorporated into the macroscale model. Tvpes$yof multiscale approaches are
usually adopted to incorporate the homogenizedtitatige relation into the macroscale

model. One is the hierarchical multiscale approadtere the homogenized stress-strain
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relations obtained by unit cell analyses are desdrby some mathematical constitutive
functions, which are employed on the macroscalewéver, the challenge with such an
approach is the complexity of fabric propertiesjalifrarely admits such comprehensive
constitutive function expressions. An alterna@ypproach is the concurrent multiscale
method, which starts a mesoscale unit cell analysenever the constitutive relation is
requested by the macroscale computation. Withaiyisoach, the macroscopic strain is
applied as prescribed load on the unit cell andd¢kaltant homogenized stress is
returned to the macroscale problem as the respaditse concurrent approach deserves
further exploration for incorporation of realistabric properties. It is worth noting that
concurrent multiscale modeling requires robusteffidient solution of the unit cell

problem, and much progress has been made on shis iis this work.

6.2.3 Collision detection

In the current framework, the collision detectisrsimplified to reduce the
computational expense. On the macroscale, thisioolldetection is conducted between
a general clothing mesh and ellipsoidal surfacasrépresent segments of the human
body. On the mesoscale, mesh-to-mesh collisioectien is confined to a local level,
where only the neighbors in the initial configuoattiare checked. For highly distorted
meshes, global collision detection is required dredefficiency of the algorithm becomes
a significant issue. An efficient global mesh-tesh collision detection algorithm is
beyond the scope of this study and was not pursaezl However, if a general body
surface mesh as shown in Fig.50 is to be employédecself-contact between clothing is

to be considered, an efficient collision detectdgorithm is needed.

6.2.4 The human model
As the main focus of the study is on clothing mougla simple human model is
employed. As mention above, the body is approxachéty an assembly of ellipsoids

with its kinematics description obtained from matmapture. An obvious limitation of



the current model is the loss of geometric fidebiyyusing ellipsoids. To address this
issue, realistic human body surface models neéeé twnstructed. Body scan techniques
can be employed for this purpose and a sample boaly mesh by courtesy of Professor

Susan Ashdown and her Cornell Body Scan ResearmhpGs shown in Fig.50.

Figure 50: A human body surface mesh constructend) Umdy scan techniques
(courtesy of Dr. Ashdown at Cornell University)

Body scans can only capture the body surface &t gtastures. For clothing-
wearer studies, however, the continuous evolutidghesurface is needed as the human
model engages in activity. To create the infororgtthe body scan and the motion
capture technique should be combined. The idemdscompose the mesh into segments
and to associate each of them with the correspgretgment in a motion capture model.

The kinematics description obtained from motiontaepsystem can then be mapped
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onto the body surface mesh and drive it throughcptured motion. With this method,
the deformation of the body surface is not includad some mesh discontinuity and
overlapping will inevitably occur as the motion peeds. Mesh merging and patching

techniques are thus needed to construct a contsnsurface mesh in motion.

Currently the motion of the human model is compyepeescribed either by time
functions of joint angles or motion capture datéis treatment limits the clothing-
wearer interaction to a unilateral situation, wheoghing only responds passively to the
given motion while cannot change the motion eveug the restriction it exerts has
made the motion unachievable. To enable the atlaptanore intelligent digital human
model has to be employed. In addition, the sesitof the clothing restriction with
respect to a given motion has to be investigated.

Another simplification used in the human modehiattthe body surface is rigid.
This assumption simplifies the contact computatubriie excludes the effect of surface

deformation in response to the clothing restriction

6.2.5 Computational issue

The proposed clothing modeling framework is compaorally intensive. On the
macroscale, time integration of a dynamic systeth womplex contact computation and
collision detection is performed. As mentionederction 6.2.3, a major bottleneck is an
efficient global mesh-to-mesh collision detectidgoaithm. In addition, fast time
integrators and parallel computation techniquesiangh further exploring as well. The
size of mesoscale yarn problem is relatively smidibwever, if it were to be applied in
the multiscale computation framework, where eatégration point corresponds to a

mesoscale unit cell analysis problem, parallelarais definitely necessary.



6.2.6 Garment design

A huge factor that has been neglected in the cuwerk is the garment design.
In the example presented in Chapter 5, the paatsarstructed by merging four
rectangular mesh patches together. No designrpataee followed and the seams are
not modeled. The neglected factors can be sigmfin determine the interactions of the
final garment on the wearer and they need to beidered in the future work. For
clothing pattern design, commercial garment compaiged design (CAD) software,
such as OptiTex, can be utilized. The pattern geoes can be created interactively
with the graphical user interface the CAD softwane then imported to the computation

framework proposed in this work.
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