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ABSTRACT 

In many circumstances, clothing adversely impacts human performance while 

also providing protection from exposure to a wide spectrum of external hazards.  For a 

successful design of protective clothing systems, two competing factors, i.e. maximizing 

the protection that it provides while minimizing the negative impact that it has on 

performance, have to be balanced.  However, due to the lack of understanding on the 

complex nature of clothing-wearer interactions and the limitation of available tools and 

approaches, the design task has always been a challenge.  In this study, the mechanical 

aspect of the clothing-wearer interaction is investigated.  The objective is to realistically 

describe clothing with computational models and to then exercise these models to 

realistically predict their impact on wearers’ performance for given tasks.  With a 

knowledge of how clothing impacts human performance, the clothing can be re-designed 

to improve performance.   

Computational solid mechanics approaches are adopted here.  A mathematical 

clothing modeling framework is developed and the contact tractions that clothing exerts 

on a wearer for prescribed motions are determined.  Based on these tractions, other 

physical quantities are derived to quantify the clothing’s impact.  The clothing modeling 

framework includes four components: (1) a macroscale clothing/fabric model, which 

represents highly flexible fabrics; (2) a mesoscale fabric/material model, which captures 

the complex material properties of woven fabrics; (3) a contact computation and collision 

detection module, which identifies potential collision and enforces appropriate contact 

constraints; and (4) a digital human model, which provides the definition of the wearer’s 

body surface and kinematics description. 

In constructing the framework, many challenging issues are identified and 

explored, such as robust computational models for highly flexible and unstable systems, 

contact computation techniques, efficient collision detection algorithms, and constitutive 
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modeling of complex fabric properties.  Each of these issues still remains its own 

challenge and the solution adopted may require improvement.  However, the novel 

framework presented in this work provides a construct to incorporate these individual 

components and has been proved effective in studying the mechanical interactions 

between clothing and wearers. 
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CHAPER 1  

INTRODUCTION 

1.1 Motivation 

Clothing, besides its aesthetic function, has long been used by human beings for 

protection against adversities and hazards, such as severe weather or weapon attacks.  

Nowadays, protective clothing has been widely employed in various applications, ranging 

from civilian to military.  Special suits have been designed for agriculture workers, fire 

fighters and astronauts to protect them against exposure to toxic chemicals, extreme heat 

or hazardous radiation etc.  Sports gears have been developed to protect athletes in 

competitive sports activities.  Body armors, helmets, boots, nuclear, biological and 

chemical (NBC) warsuits have been constructed to protect soldiers in various warfare.   

While clothing systems provide protection, they can also negatively impact 

wearers’ performance in many aspects [9].  Physiologically, it has been well established, 

e.g. [4-6], that a chemical protective suits due to its impermeability and high insulation 

properties can significantly constrain the heat dissipation and impose heat stress on a 

wearer.  Mechanically, it has been observed as in [4-6] that clothing can restrict wearers’ 

mobility, dexterity or range-of-motion and interfere with the execution of tasks.  Clothing 

can also have negative psychological effects on wearers as reported in [7,8].  These 

factors in addition to many others not mentioned here interact and affect wearers’ 

performance in a very complex way [10].  Moreover, the negative impact may lead to 

rejection of protection clothing, thus increasing the risk of injury or casualty. 

Consequently, in order to design a good protective clothing system, two 

competing factors, i.e. maximizing the protection the clothing provides while minimizing 

the negative impact it has on performance, have to be balanced.  Due to the lack of 

understanding on the complex nature of clothing-wearer interaction and the limitation of 

available tools and approaches, however, the design task has always been a challenge.  
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Many factors considered in clothing-wearer interaction currently adopt subjective 

measures.  The vague definitions of these measures limit the quantification and 

comparison of the factors and obscure the understanding of the interactions between 

clothing and wearers.  Most approaches and tools currently adopted are based on 

experimental studies, which have been effective in identifying the factors yet provide 

limited help in understanding them as it is difficult to isolate the huge volume of 

interacting factors and to conduct experiments that test all the possibilities.  For example, 

an important factor considered in the clothing-wearer interaction is fit and sizing, which 

is usually measured by visual identification of the stress regions, where fabrics are 

stretched and are thus considered as restriction on the wearer’s motion.  The visual 

identification can be subjective and inconclusive.  In addition, for physical try-on, 

prototyping and subjects are needed, which can be time-consuming and expensive 

considering the large anthropometry variations in wearers and the iterative nature of a 

design cycle. 

It is thus instrumental to construct an analysis framework, which can quantify the 

effects a given design may have on the wearers’ performance and can thus lead to better 

understanding of the clothing-wearer interaction problem.  Based on the analysis 

framework, a design tool can be developed to facilitate the design process for protective 

clothing.  This very idea motivated the research presented in this work, where a 

mathematical clothing modeling framework is investigated.   

1.2 Objectives and organization 

Clothing impacts a wearer in various ways and the factors can be physiological, 

mechanical and psychological etc.  This work is by no means to include all the factors.  

Instead, only the mechanical factors are considered here.  Two notations justify the 

choice: (1) the mechanical effects are most likely to be related to objective measures, 

eliminating the uncertainty due to the subjectivity; (2) the mechanical effects constitute 
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the fundamental component of the clothing-wearer interaction, on which other factors 

depend.  For example, the heat dissipation feature of clothing is closely related to the air 

space between the clothing and the wearer and the information is determined by the 

mechanical interaction. 

In this work, a computational framework for clothing modeling is constructed and 

the mechanical interactions between clothing on wearers are investigated.  Computational 

models are developed for both clothing and wearers and their interaction are calculated 

using computational solid mechanics approaches.  The main focus of the study is to 

explore the construction of the entire framework rather than to develop novel techniques 

to solve the individual mechanics problems involved.  Due to this reason, some mature 

methods in computational solid mechanics are directly applied here while some are 

developed if they are not available. 

The quantity studied here is the contact forces or tractions clothing exerts on a 

wearer.  Given the wearer’s motion, the contact forces are determined by considering the 

contact constraints between the cloth and the wearer’s body surface.  Based on the 

contact forces, other physical quantities are derived and they are then interpreted as the 

impacts clothing has on the wearer for the given motion.  With this scenario, the clothing 

modeling framework is decomposed into the following four components: (1) a 

macroscale clothing/fabric model, which basically represents a garment under 

macroscopic loading, such as a given posture the wearer undertakes; (2) a mesoscale 

fabric/material model, which captures the complex material properties of woven fabrics; 

(3) a contact computation and collision detection module, which identifies potential 

collision and enforces appropriate contact constraints; and (4) a digital human model, 

which provides the definition of the wearer’s body surface and kinematics description. 

A multiscale terminology is adopted in the discussion of fabric modeling.  This is 

due to the complex hierarchical constituents of varying length scales observed in woven 

fabrics.  On macroscale, fabrics are perceived as thin plates or membranes.  On 
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mesoscale, discontinuous yarn structures are observed and the interactions of the 

interwoven yarns determine the macroscopic material properties of fabrics.   On 

microscale, each yarn is a fiber bundle and the behaviors of the bundle govern the overall 

properties of a yarn.  A schematic of the multiscale hierarchy view of woven fabrics is 

shown in Fig.1.  In this work, fabric modeling on the macroscale and the mesoscale are 

investigated and computational homogenization techniques are applied to relate the 

mesoscale yarn interactions to the macroscale fabric properties.  While the microscale 

problem of the fiber bundles is not covered here. 

 

Figure 1: A schematic view of multiscale modeling of woven fabrics 

Macroscale garment and fabrics 

Mesoscale yarn structures 

Microscale fiber bundles 
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The organization of the paper is as follows:  In Chapter 2, the macroscale 

clothing/fabric modeling is discussed.  Previous research works on the subject are first 

reviewed and a fabric model based on geometrically nonlinear shell finite element 

formulation is proposed.  In Chapter 3, contact computation and collision detection 

techniques are summarized and two algorithms are devised to solve contact problems on 

the macroscale and the mesoscale, respectively.  In Chapter 4, the complexities in fabric 

properties and their constitutive modeling are presented.  Computational homogenization 

and unit cell analysis techniques for mesoscale fabric/material modeling are proposed.  In 

Chapter 5, the digital human model developed for this study is briefly introduced and the 

clothing-wearer interaction studies based on the proposed clothing and human model are 

presented.  Finally, the paper is summarized in Chapter 6 and research visions are shared 

as well. 



 6 

CHAPTER 2 

MACROSCALE FABRIC MODELING 

As highly flexible media, clothing fabrics develop complex configurations with 

vague wrinkling patterns when draped onto objects or human bodies.  Due to the small 

fabric thickness, these wrinkling configurations are very unstable and change 

responsively to tiny perturbations.  The vague and vibrant fabric behavior, though quite 

appealing to the eyes of artists and fashion designers (Fig.2), poses a great challenge to 

mathematical modeling of clothing mechanics.  In this chapter, numerical models that can 

realistically represent the complex fabric feature are studied. 

 

Figure 2: Study of Madonna and Child with St Anne by Leonardo da Vinci 

A major momentum in cloth/fabric modeling research is accredited to computer 

graphics community as movie and game industries try to create realistic visual effects and 

animations related to clothing.  The approach that prevails in this area is particle-based 

method, which treats cloth as a dynamic system composed of interacting mass points or 

particles and solves cloth animations by time integration of the system.  Simple as it is, 
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the particle-based method does shed light on the essence of cloth modeling, i.e. evolution 

of a dynamic system, and it is capable of generating realistic (even stunning) animations 

as shown in Fig.3.  However, the method falls short in relating a model to real fabric 

properties.  A general practice an animator adopts is to tweak the parameters of a particle 

model until the animation looks right visually. 

 

Figure 3: A cloth drape simulation by Breen using a particle model  

Apart from particle-based method, another type of approach treats fabric as a 

deformable surface.  Local equilibrium of a continuous medium is usually considered and 

used as a point of depart.  Numerical models are derived following standard 

computational techniques, such as finite difference methods of finite element methods.  A 

typical application of this approach, mostly contributed by textile and mechanical 

engineers, is to study the effects of fabric material properties on its drape configurations.  
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In their models, fabric drape is formulated as an equilibrium problem and solved with 

finite element methods, which allows incorporation of various material models.  The 

surface-based approach is generally more rigorous in a mathematical and mechanical 

sense but tends to be more complex than the particle-based method. 

In this work, a thorough study on both approaches is conducted.  A representative 

particle model is implemented first.  And a finite element model is formulated and 

constructed as well.  A comparison of the two approaches is provided and suggestions on 

macroscale fabric modeling are presented. 

2.1 Previous works on clothing simulation 

2.1.1 Particle-based methods 

2.1.1.1 Mass-spring models 

In 1995, Provot [11] proposed a mass-spring cloth model.  In his model, fabrics 

were modeled as an array of mass particles inter-connected by linear springs of three 

different types, structural, shear and flexion springs characterizing the stretching, in-plane 

shear and bending deformation of fabrics respectively.  As illustrated in Fig.4, structural 

springs connect a particle with its direct neighbors along the two perpendicular axes, 

which are usually aligned with warp and weft yarn directions, while shear springs 

connect a particle with its neighbors in the diagonal directions.  Flexion springs are also 

along the two perpendicular yarn axes but each connects every other particles. 

Since the interaction between two inter-connected particles was defined as a 

linear spring, given the positions of two particles, say i and j, the forces exerted on them 

can be computed as  

 ( )
d
d

dF 0lki −=  and ( )
d
d

dF 0lkj −−= , (2.1) 
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where ij xxd −= is the relative position vector of the two particles and 0l  and k denote 

the free length and stiffness of the spring respectively. 

 

Figure 4: Provot’s mass-spring model 

The evolution of the system was obtained by the time integration of the particle 

accelerations, iii m∑= Fa , where im denotes the mass of particle i and ∑ iF the sum 

of total forces applied on it.  An explicit time integration scheme was adopted, which is 

summarized as follows 

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ).

;

;
1

tttttt

tttttt

t
m

tt

∆+⋅∆+=∆+
∆+⋅∆+=∆+

=∆+ ∑

vxx

avv

Fa

. (2.2) 

Since the step size of an explicit integration is controlled by the stiffness of the system, 

relatively compliant springs were used, which resulted in unrealistic overstretch in some 

springs.  To address this issue, a heuristic method was proposed by Provot to adjust the 

positions of the particles associated with the overstretched springs.  

warp 

weft 

Structural springs 

warp 

weft 

Shear springs 

weft 

warp 

Flexion springs 
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An extension of the mass-spring model was proposed by Choi and Ko [12].  They 

considered the buckling effect of fabrics and included it in the formulation of the bending 

springs.  A buckled segment of fabric of length L subjected to a compressive load P was 

assumed to be pinned on both ends as shown in Fig.5, which yields the following 

equilibrium equation  

 0=+ Pykbκ , (2.3) 

where bk  is the bending rigidity, κ the curvature and y denotes the deflection.  Numerical 

solutions of this differential equation were found for different load levels.  The strain 

energy due to bending, which in is general defined as 

 ∫=
L

dsME
02

1 κ , (2.4) 

can be obtained by integrating the curvature and moment in terms of the arc-length of the 

spring, s.  In doing this, the length of the fabric segment was assumed to remain the same 

before and after buckle as L.  In stead of using the numerical solution of Equation (2.3) 

for the integration, the curvature κ was assumed to be a constant for simplicity and the 

integration became  

 2

2

1 κLkE b= . (2.5) 

Choi and Ko expressed the curvature in terms of the length of a bending spring as  

 









= −

LL

d1sinc
2κ , (2.6) 

where xxx )sin()sinc( = .  This relationship can be derived by noticing that the radius 

  
θ

ρ
2

L=  and 
θ

ρ
sin2

d
= , (2.7) 
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which yields 

 
θ

θsin=
L

d
 (2.8) 

and thus 

 









= −

L

d1sincθ . (2.9) 

The spring force, which is the derivative of the bending energy in Equation (2.5), was 

derived as 

 

,
2

sinc
2

cos
1

2

d
d

d
d

d
f

−








 −=

=

LL
k

d

d
Lk

b

bi

κκκ

κκ

 (2.10) 

which is a nonlinear force representing the compression/buckling behavior of fabrics. 

Choi and Ko’s work provides some insight into the physical meaning of the 

flexion/bending spring used in a mass-spring model.  In fact, it is more appropriate to 

name it as a compression spring, since the spring directly models the buckling response 

of fabrics subjected to compressive loading.  However, as the buckling is essentially a 

deformation controlled by bending, the spring is also representative of the bending 

behavior of fabrics.  

Simple as they are, mass-spring models are capable of producing visually 

convincing animations and have been widely adopted in computer graphics community 

for clothing simulation.  However, since the models are not related to any real fabric 

properties, they cannot simulate a specific fabric type without modifications and the 

mechanical response they predict may not be realistic.  Moreover, for complicated 
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geometry, if the structural springs are not aligned with the warp and weft directions, 

unrealistic results are observed. 

LL
P PP P
 

Figure 5: Fabric buckling model used by Choi and Ko 

2.1.1.2 Particle models 

Instead of using simple linear elastic springs, some researchers constructed more 

sophisticated particle-based fabric models.  Motivated by Hearle [15]’s comments on the 

inadequacy of traditional continuum theory for fabric modeling, Breen et al. [13,14] 

proposed a discrete fabric model based on interacting particles.  They founded their work 

“on the premise that by modeling the low-level structures of a material and 

computationally aggregating their interactions, correct macroscopic behavior will 

emerge”.  With their approach, a piece of fabric is modeled as an array of particles 

conceptually representing the crossing points of warp and weft yarns in plain weave 

fabric.  For computation feasibility, a particle in the model actually represents a fabric 

patch with dimensions determined by the discretization resolution and the interactions 

between particles are the aggregation of those between the represented patches.  

Four basic mechanical interactions between particles, i.e. repulsion, stretching, 

bending and trellising (in-plane shear), were modeled by the definition of energy 

functions and the strain energy of particle i was the summed as 

 
iiii trellisbendstretchrepeli UUUUU +++= . (2.11) 
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The repulsion energy 
irepelU  was an artificial energy designed to prevent self-intersection 

of the cloth and was calculated by summing over all particles as 

 ∑
≠

=
n

ij
ijrepel rRU

i
)( , (2.12) 

with n denoting the total number of particles in the model and function R defined as 

 
( )[ ]





>
≤−=

σ
σσ

r

rrrC
rR

                       ,0

   ,
)(

5
0  (2.13) 

where r denoted the distance between two particles and σ  the nominal distance between 

the two.  The stretching energy 
istretchU  was defined between particle i and its four 

neighbors along the yarn directions as 

 ∑
∈

=
i

i
Nj

ijstretch rSU )( , (2.14) 

where iN  was the set of the four neighbors and function S was approximated by  

 ( )[ ]



>−

≤
=

σσσ
σ

rrC

r
rS

   ,

                        ,0
)(

5
0

. (2.15) 

0C  in both Equation (2.13) and (2.15) was a stiffness parameter.  According to Breen, the 

combination of these two energy functions should “constrain each particle tightly to the 

nominal distance σ  from each of its four-connected neighbors” and a “separation force” 

between neighboring particles can be derived as 

 
( ) ( )( )

( )





>−

≤−+−
=

∂
+∂=

σσσ

σσσσ

rrC

rrrC

r

SR
rF

                ,5

   ,4
)(

54
0

24
0  (2.16) 

From this equation, one may notice that in addition to its original purpose, preventing 

cloth from self-intersection, the repulsion energy also describes the compression behavior 

of fabric yarns.  However, this may lead to an ambiguity regarding the choice σ .  For 

compression σ  is the free distance between two neighboring particles, which depends on 
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the grid spacing of discretization resolution, while for repulsion σ  is the minimum 

distance keeping clothing from self-contact.  These two quantities are different in 

magnitudes and need to be distinguished. 

Noticing that “the bending and trellising properties are significant contributors to 

the overall draping behavior of cloth”, Breen et al. formulated the energy functions for 

bending and trellising based on experimental data obtained from Kawabata Evaluation 

System for Fabrics (KES-F) [16].  The bending energy at particle i was defined by  

 ∑
∈

=
i

i
Mj

ijbend BU )(θ , (2.17) 

where iM  was the set of six angles formed by the segments connecting particle i and its 

eight nearest neighbors along the yarn directions (Fig.6a).  Assume that each particle 

represents a σσ ×  fabric patch, the bending energy due to the bending angle θ  made by 

two segments in either yarn direction was evaluated as 

 2

2
σκM

B = , (2.18) 

where M and κ denoted moment and curvature in the bending direction and the 

relationship )(κMM =  was obtained from Kawabata tests .  For constant curvature, κ  

was related to the bending angle θ  shown in Fig.6a by  

 






=
2

cos
2 θ
σ

κ . (2.19) 

Trellising deformation at a particle was characterized by the shear angle φ  shown in 

Fig.6b.  The trellising energy function at particle i was defined as 

 ∑
∈

=
i

i
Kj

ijtrellis TU )(φ , (2.20) 
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where iK  was the set of four neighbors of particle i along the yarn directions.  Function T 

was derived by considering the work performed by external force in a Kawabata shear 

test and it was computed as 

 ∫= φφφ dFlT cos)( , (2.21) 

where F and φ denoted the measured shear force and angle respectively while l was the 

width of the Kawabata shear test specimen.  Since each particle represents a σσ ×  fabric 

patch, Equation (2.21) was scaled by a ratio of the area of the patch to the area of actual 

Kawabata shear test specimen. 

 

Particles associated with bending   

 (a) Bending  

θ

σ

π

σ  

Bending angle θ  

(b) Trellising 

Particles associated with trellising   

2π

φ

  Trellising angle φ   

 

Figure 6: Breen’s energy function definitions 
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Based on the particle model, the draping characteristics of fabrics were predicted 

by minimizing the total energy in the particle system and the results compared favorable 

with experimental validations.  The most significant contribution of this model is that the 

mechanical properties of a specific fabric type can be included through the formulation of 

the energy functions, which make it possible to simulate the macro-scale behaviors of 

different fabric types.  As the internal forces between particles can be derived from the 

definitions of the energy functions, the model can be reformulated as a dynamic problem 

and the evolution of the particle system can thus be computed.  The reformulated 

dynamic particle-based model can be viewed as a generalized mass-spring model with 

nonlinear internal forces. 

Motivated by Breen et al.’s work, Eberhardt et al. [17] proposed a model to 

simulate the dynamics of fabric draping.  Like Breen’s model, a rectangular grid aligned 

with the warp and weft directions of cloth was adopted with each grid point representing 

a particle, whose trajectory is governed by the Lagrange equation 
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LL
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∂=

∂
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, (2.22) 

where ix and iv denote the position and velocity of particle i respectively.  The Lagrange 

function of the particle system was evaluated by  
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where 
ikinE and 

ipotE are the kinetic energy and gravitational potential of particle i 

respectively and 
it

E , 
isE  and 

ibE  strain energies corresponding to three types of internal 

forces, tension/compression, shearing and bending.  

To construct accurate energy functions, Kawabata experimental data was used.  

Piecewise linear functions were used to approximate the original Kawabata curves and 

two parameters, C , the slope of the curve and h , the intercept of the curve with x-axis, 
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were retrieved for each linear approximation segment.  Based on the two parameters, a 

quadratic form of strain energy for the approximated neighborhood was constructed.  

The bending energy at a particle was assumed to be a function of the two bending 

angles about the two yarn directions as shown in Fig.7a and it was given as 

 ( )∑
=

−−=
2

1

2

2

1

i
bibb ii

hCE πψ . (2.24) 

The shearing energy at a particle was considered as a function of the four shear angles 

formed by the gridlines connecting itself and its four directly connected neighbors 

(Fig.7b) and was defined as  
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Figure 7: Eberhardt’s energy function definitions 

Likewise, the tension/compression energy was defined as follows 
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where 0p  and ip  denote the position of a particle and one of its four neighbors 

respectively and id  is the free distance between them.  Different values for the 

parameters C and h were stored for each linear approximation segment of the Kawabata 

curves and the right set was picked given the deformation and the history.  Then the 

Lagrange function was differentiated symbolically and the resulting differential equations 

were solved by a Runge-Kutta method with adaptive step-size control.  With this 

approach, the hysteresis of fabrics was included.  

2.1.2 Surface-based methods  

2.1.2.1 Nonlinear elastic surface models 

In order to create animations of deformable bodies in computer graphics, 

Terzopoulos et al. [18] introduced a physical-based model by applying the principles of 

elasticity and differential geometry.  They started with Lagrange equation, which governs 

the motion of a deformable body 

 ),(
)(

t
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r
rrr =+

∂
∂+
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
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



∂
∂
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∂
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δεγµ , (2.27) 

where ),( tar is the position of a material point a at time t, )(aµ  the mass density at the 

point, )(aγ  the damping density, and ),( trf the external forces applied.  The functional 

( )rε  is the strain energy function characterizing the elastic deformation of the object.  

For a surface, the strain energy function was assumed to be 

 ( )∫
Ω

−+−= 21
2020 )()()( dadaBBGG ijijijijijij ξηε r , (2.28) 
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and n denotes the unit surface normal.  The deformation measures G and B are the first 

and second fundamental forms of surfaces and the superscript 0 indicates the quantities 

associated with the reference configuration.  Then the conservative forces, i.e. rδδε , are 

given by 
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where  
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are constitutive functions describing the elastic properties of the material.  By changing 

ijη  and ijξ , different materials, such as rubber, paper, metal and cloth, were modeled.  

For cloth, ijη  was set to large values andijξ  to zero, indicating strong resistance to 

stretching and compliance to bending.  Equation (2.27) together with (2.30) was 

discretized by finite difference methods over a regular mesh and a set of second-order 

ordinary differential equations as 

 frrK
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)(
2

2

tt
, (2.31) 

was obtained and solved by implicit time integration.   

Terzopoulos et al. also proposed the strain energy functions for curves and solids 

based on the deformation measures derived from the differential geometry.  Since these 

deformation measures are invariant under rigid body motion, large deformation was 

properly modeled and realistic simulations were obtained.  In one of their later work, 

Terzopoulos and Fleischer [18] even included viscoelasticity, plasticity and fracture into 

their model, enabling a complete physical-based simulation framework for computer 
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graphics.  Terzopoulos’s general model was later adopted and extended by Thalman et al. 

[20] in cloth simulation. 

2.1.2.2 Finite element models 

In 1991, Collier et al [21] showed that fabric drape can be predicted using a 

nonlinear shell finite element model.  A circular piece of cotton plain-weave fabric was 

modeled and the drape predicted by the model was compared with experimental results of 

drape test [22, 23].  A four-node quadrilateral flat-shell element, which combines a 

membrane element with a plate-bending element, was adopted and Green strain measure 

was used.  Two constitutive models, isotropic and orthotropic linear elasticity were tested 

and it was found out that the orthotropic one is more appropriate for fabric modeling.  

Three input parameters were needed for the orthotropic model, the tensile moduli in two 

yarn family directions, which were measured using KES-F system, and the Poisson’s 

ratio, for which literature values were used.  An interesting effect was reported that the 

deformed shape was sensitive to the Poisson’s ratio. 

In the mid 90s, Chen and Govindaraj [24, 25] proposed a fabric model based on 

nine-node degenerated shell elements.  The constitutive relationship adopted was given 

by the following form 
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where iσ  and iε  denote the stress and strain respectively and ijQ  are elastic constants 

deduced from the plane stress assumption, which read as 
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where 1E  is Young’s modulus in the warp direction, 2E is Young’s modulus in the weft 

direction, 2312,GG and 31G are shear modulus and ν  is Poisson’s ratio.  Such a 

constitutive model can be categorized as orthotropic linear elasticity without 

differentiating Poisson’s ratios for different material directions.  The Young’s moduli and 

the shear moduli were obtained by KES-F and the Poisson’s ratio was determined from 

tests using an Instron tensile tester.  Nonlinear strain measures defined in local curvilinear 

coordinate frames were adopted and a Newton-Raphson method was used to solve the 

nonlinear equations.  Fabric drape shapes predicted by the model were compared with the 

actual experiment measurements and good agreements were observed.  In addition, Chen 

and Govindaraj [25] did some parametric studies of the effects of various material 

properties on the drape deformation.  It was found that  

� Orthotropy in drape deformation were affected by the thickness and shear 

modulus. For low shear modulus or small thickness, the model didn’t 

exhibit orthotropic drape shapes even though orthotropic material 

properties were used.  

� Poisson’s ratio didn’t affect the drape shape, which is contrary to what has 

been reported by Collier et al. [18]. 

Moreover, they presented an example showing that Young’s and shear moduli retrieved 

in the low strain range of Kawabata experiment data generated drape shape very close to 

actual one, which indicated that for fabric drape linear elastic model is an acceptable 

assumption. 

Around the same time, Gan, Ly and Steven [26] also reported a nonlinear shell 

fabric model.  They used the curved degenerated shell element introduced by Bathe in 

[27].  Green strain and Piola-Kirchhoff stress were used to describe the strains and 

stresses and the problem was solved using Newton-Raphson method.  They assumed that 

fabrics are linearly elastic and orthotropic.  Instead of relating the bending stiffness of 

fabrics to the Young’s moduli based on linear strain assumption as Chen and Govindaraj 
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[24, 25] did, they assumed that fabrics have independent bending and tensile stiffness and 

experimental data of fabric bending rigidity obtained from KES-F system were used.  In 

order to eliminate locking, reduced integration with zero energy mode control was 

applied.  Two examples were presented, one simulating two-dimensional cantilever 

bending and the other simulating three-dimensional drape.  The simulation results were 

checked against experimental measurements and good agreement was found. 

Deviating from traditional degenerated shell elements, Eischen [28] proposed a 

fabric model based on Simo’s [29-31] geometrically exact shell theory.  Isotropic elastic 

material model with a nonlinear moment/curvature relationship derived from KES-F 

system was used and arc-length controlled solution technique was implemented to treat 

the instability due to fabric buckling.  The contact between fabrics and rigid surfaces was 

considered and the contact constraint was enforced by a penalty method.  Examples such 

as fabric drape and handing were presented. 

2.2 A macroscale fabric model using particle method 

To understand the detail of fabric modeling using particle-based methods, the 

mass-spring fabric model proposed by Provot [11] is implemented here.  With this model, 

a piece of fabric is represented as a network of the three types of springs, structural, shear 

and flexion.  The dynamics of the fabric, which is essentially the trajectory of each mass 

point in the system, is determined by the forward Euler time integration.  The 

implementation is straightforward and visually realistic fabric animations are created with 

the model.  Fig.8 shows a snapshot of a draping simulation of a square fabric piece 

pinned at two corners on an ellipsoid. 

To achieve visual realism with the model, a critical step is to tweak the stiffness 

parameters for the springs.  As the springs are not rigorously defined on the basis of 

mechanics, it is not straightforward to relate the spring stiffness to actual material 

properties of fabrics.  As a result, visual inspection is heavily relied upon when these 
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parameters are to be determined.  Another observation about the mass-spring model is its 

mesh dependency.  When mesh is refined, the spring stiffness parameters need to be 

modified.  And when irregular mesh is employed, especially when structural springs are 

not orthogonal, the model does not behave properly.  These limitations are due to the lack 

of explicit definition on the discretization scheme, which relates an actual fabric with a 

discrete model.  Tis weakness motivated the development of a shell finite element 

formulation presented in the following. 

 

Figure 8: Fabric drape simulation using Provot’s mass-spring model 

2.3 A macroscale fabric model based on shell formulation 

In this section, a macroscale fabric modeling framework based on nonlinear shell 

finite formulation is constructed.  The major concern here is to construct a computational 

fabric model, which has rigorous specification on the spatial discretization and allows 

straightforward incorporation of realistic material properties.   

A shell finite element with fully nonlinear kinematics description is developed 

and consistent linearization is conducted.  Both the quasi-static and the dynamic 

formulation are supported and the solution algorithms based on Newmark’s methods are 

presented.  St. Venant material model is considered here by assuming a small strain in 
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fabrics under normal wearing conditions.  More discussions on fabric material properties 

are presented in Chapter 3. 

2.3.1 Geometrically nonlinear shell formulation 

2.3.1.1 Problem statement 

Total Lagrangian formulation is adopted and the governing equations are 

summarized as follows: 
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where 0Ω  is the reference configuration and iJP  is the first Piola-Kirchhoff stress tensor.  

0

it
Γ  and 0

iuΓ  are the parts of the boundary 0Ω∂  where the traction 0it  and displacement iu  

are prescribed.  JN  is the outward normal to the boundary in the reference configuration.  

With an admissible variation uδ , the weak form is obtained as 
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For quasi-static problems, the last term due to inertial is eliminated and the weak form is 

written as  
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The left-hand side of the preceding is the virtual work done by the internal force, which is 

denoted as intWδ , and it could be verified that 
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where  JiiJ xF ,=  is the deformation gradient; ( ) 2IJkJkIIJ FFE δ−=  is the Green strain 

tensor; and 1
IJ Ik kJS F P−=  is the second Piola-Kirchhoff stress tensor. 
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2.3.1.2 Geometry and kinematics 

The geometrical description of the shell element follows Hughes’s work [32].  

The initial global position vector of a material point ( )ζηξ ,,  in a shell element is defined 

by the following relation: 

 ∑∑
==

+=
nen

A
AAA

nen

A
AA zNN

11

ˆ)(),(),(),,( XXX ζηξηξζηξ , (2.37) 

where AX  is the initial position vector of node a; AX̂  is the fiber director emanating from 

node A in the fiber direction; ( )ζAz  is a thickness function; ( )ηξ ,AN  denotes a two-

dimensional shape function associated with node A and nen is the number of element 

nodes.  Given the coordinates of the top and bottom surfaces of the shell along each nodal 

fiber, i.e. +
AX  and −

AX , and a parameter [ ]1,1+−∈ζ  designating the natural coordinate of 

the reference surface, in which shell nodes locate, the quantities in Equation (2.37) can be 

determined as follows 
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where   •  denotes the Euclidean norm.  For example, to choose middle surface of the 

shell as reference, one sets 0=ζ  and the nodal position ( ) 2−+ += AAA XXX  while the 

thickness function ( ) 2−+ −= AAAz XXζζ  with [ ]1,1+−∈ζ .  The construct is sketched in 

Figure 2-7.  At each node a local coordinate system ( )f
A

f
A

f
A 321 ,, eee , named fiber 

coordinate system, is constructed and nodal rotation is specified with respect to the 

frame.  In the initial configuration fA3e  is chosen to coincide with the fiber direction AX̂  

and the other two legs are constructed using the algorithm given in [32]. 
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Figure 9: Geometrical description of the shell element 

The updated configuration of the shell is defined in a similar manner 
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where Ax  and Ax̂  denote the current nodal position and fiber orientation, respectively.  

For finite deformation, these nodal quantities are related to the initial ones as 

 AAA uXx +=  and AA XRx ˆˆ ⋅= , (2.40) 

where Au  denotes the nodal translation and R  is an orthogonal matrix describing a finite 

rotation of the nodal fiber director.  Suppose vector Ax̂ is obtained by rotating AX̂  by an 

angle θ  about an axis defined by unit vector n.  According to Euler’s theorem, one has 

following relation 

 )ˆ()cos1(ˆ sinˆˆ AAAA XnnXnXx ××−+×+= θθ , (2.41) 
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where ( )T
321 ,, θθθθ == nθ is the axial vector of the rotation.  By defining a skew-

symmetric tensor such that AA XθΩXθ ˆ)(ˆ ⋅=× , the rotation matrix can be written as 
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with  
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In shell kinematics, nodal rotations are permitted about the first two axes of the fiber 

basis (e.g. f
A

f
A

f
A

f
AA 2211 eeθ θθ += ), which excludes the drilling degree of freedom (DOF) 

about f
A3e , and the new orientation of fiber director AX̂  is thus given by 
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The fiber director tip, i.e. AAA Xxu ˆˆˆ −= , is 
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which recovers the infinitesimal rotation case f
A

f
A

f
A

f
AA 2112ˆ eeu θθ −=  given in [32] when 

0→θ . 

To summarize, according to (2.39) and(2.40), the shell configuration is a 

nonlinear function of nodal translation Au  and rotation Aθ .  By defining a nodal 

displacement vector ( )AAA θud ,= , it can be written as 
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2.3.1.3 Linearized kinematics 

In general, Equation (2.34) and (2.35) are nonlinear and are solved iteratively 

using Newton’s method.  In the following, the shell geometry in (2.44) is linearized in the 
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context of the solution method.  Suppose that a trial configuration has been obtained and 

is given as 
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An updated configuration ( )Adxx =  as given in (2.44) can be linearized about *x  as 

follows 
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where x∆  is the directional derivative of x along an incremental nodal displacement 

( )AAA θud ∆∆=∆ ,  and it is computed as  
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A nodal rotation is usually specified with respect to the local nodal fiber basis 

( )3,2,1, =if
Aie  as f

A
f

A
f
A

f
AA 2211 eeθ θθ += .  As the fiber basis in general differs from the 

global basis ( )3,2,1, =iie , a transformation is defined as 
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f
AiijT ee ⋅= . (2.48) 

The directional derivative of R in (2.47) is thus expanded as follows 
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where nodal index A is not summed and  
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Two auxiliary vectors ( )2,1,ˆ =αα
ADu  can be defined as follows 

 f
Anf

A

f
mn

mi
A
i X

R
TuD ˆˆ

α
α θ∂

∂
=  (A not summed), (2.51) 

which can be interpreted as the linearized displacement of fiber director tip.  According 

to (2.50) and (2.48), the vectors AD αû  depend on both the reference nodal fiber basis f
Aie  

and the rotation angle Aθ .  For an infinitesimal rotation, i.e. 01 →f
Aθ  and 02 →f

Aθ ,  

 ( )Tf
Af

A

f

010ˆ
1

−→
∂
∂

X
R
θ

 and ( )Tf
Af

A

f

001ˆ
2

→
∂
∂

X
R
θ

, 

which yields f
A

AD 21ˆ eu −=  and f
A

AD 12ˆ eu = . 

The linearized change of configuration given in Equation (2.47) can thus be 

written as  

 ∑∑
==

∆+∆=∆
nen

A

f
A

A
iAA

nen

A
AiAi uDzNuNx

11

ˆ αα θ . (2.52) 

By introducing a generalized interpolation matrix AH , the equation above can be written 

as follows 

 A
A dHx ∆⋅=∆ , (2.53) 

where  
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or in a component form as 

 ( ),   1,2,3 and 1,2,...5A
i i Ax H d iχ

χ χ∆ = ∆ = = . (2.54) 

As AD αû  is a nonlinear function of Aθ , the interpolation is deformation dependant, which 

is different from that of a continuum element.  The variation of shell configuration due to 

a virtual nodal displacement is computed in a similar manner as  

 A
i i Ax H dχ

χδ δ= . (2.55) 

And the variation of the deformation gradient and Green Lagrangian strain are  

 IiiI xF ,δδ =   (2.56) 

and  

 ( ) 2,, JkkIkJIkIJ xFFxE δδδ += ,  (2.57) 

respectively.  The linearized variational strain is  

 ( ), , , , 2IJ k I k J k I k JE x x x xδ δ δ∆ = ∆ + ∆ . (2.58) 

2.3.1.4 Force vectors and tangential matrices 

In Newton’s iteration, the internal virtual work defined in (2.36) is linearized at 

the current trial solution *d as 

 
*

0 0 0

0 0 0
int

IJ IJ IJ IJ IJ IJL W E S d E S d E S dδ δ δ δ
Ω Ω Ω

  = Ω + ∆ Ω + ∆ Ω  ∫ ∫ ∫d
. (2.59) 

Due to the symmetry of the second Piola-Kirchhoff stress, the first term in (2.59) can be 

written as  

 
0 0

0 0
A

IJ IJ A IJ IJE S d d B S dχ
χδ δ

Ω Ω

Ω = Ω∫ ∫ , 
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where ,
A A
IJ k I kJB H Fχ χ= , and the internal force is obtained as  
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0
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A IJ IJf B S dχ
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Ω

= Ω∫ . (2.60) 

The second term in Equation (2.59) is expanded as follows 
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which yields the geometric stiffness  
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A B k I k J IJK H H S dχ µ
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= Ω∫ . (2.61) 

Assume that the material response  

 :IJ IJKL KLS E∆ = ∆D ,  (2.62) 

where D is the tangent material tensor, the last term of (2.59) is expanded as follows 
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which yields the material stiffness  

 
0

0
M A B
A B IJ IJKL KLK B B dχ µ

χ µ
Ω

= Ω∫ D . (2.63) 

The external force vector is contributed by the body force and applied surface tractions, 

which can be written as  

 
0

0

0
0 0 0

ti

ext A A
A i i i if H b d H t dχ χ

χ ρ
Ω Γ

= Ω + Γ∫ ∫ . (2.64) 

Assuming that the external load is independent of the deformation, linearization of the 

external force is not performed. 
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The inertial term in Equation (2.34) is complex due to the shell kinematics.  

Recall that the reference and the current configurations of a shell element are given by 

(2.37) and (2.39), respectively.  The displacement is thus  

 ∑∑
==

⋅+=−=
nen
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AAA

nen

A
AA zNN

11

X̂RuXxu , 

and the acceleration becomes 
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uu ɺɺɺɺɺɺɺɺ , (2.65) 

The last term of (2.65) is proportional to the square of the angular velocity, which 

complicates the solution algorithm, and is usually neglected.  The acceleration is then 

interpolated from nodal quantities based on the same relation for linearized displacement 

given in (2.54)  and it is written in component form as  

 ,   A
i i Au H dχ

χ= ∆ɺɺɺɺ . (2.66) 

The inertial term in the weak form (2.34) becomes 

 
0 0

0 0 0 0
A B

i i A i i Bu u d d H H d dχ µ
χ µδ ρ δ ρ

Ω Ω

 
Ω = Ω ∆ 

 
 

∫ ∫ ɺɺɺɺ , 

which yields the mass matrix 

 
0

0 0
A B

A B i iM H H dχ µ
χ µ ρ

Ω

= Ω∫ . (2.67) 

As the generalized interpolation functions AiH χ  are deformation dependant, so is the 

mass matrix.  Consistent linearization of this term is necessary when a solution algorithm, 

e.g. Newmark method, is considered, and the development is presented in the solution 

algorithm section. 

The forces and stiffness can be organized into vector and matrix notations and 

assembled to form a global linear equation system in the following form 

 ( ) ( ) dMfddKdf ɺɺ⋅−=∆⋅+ extint ** , (2.68) 
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where *d  denotes the current trial solution; d∆  is the incremental solution to be 

determined; dɺɺ  is nodal acceleration, which is dependant upon the specific time 

integration scheme; and K  is the tangential stiffness, which includes both geometrical 

and material contribution from (2.61) and (2.63).  For static or quasi-static problems, the 

inertia term is neglected and the equation system becomes 

 ( ) ( ) extint fddKdf =∆⋅+ ** . (2.69) 

2.3.1.5 Constitutive model 

The material properties of fabrics are extremely complex.  Nonlinearity, 

anisotropy and hysteresis are generally observed and many factors, such as the 

constituent yarn properties, the weave patterns, the geometry of yarn structures and the 

interactions of interwoven yarns, affect the overall material properties of fabrics.  A 

detailed study on this subject is presented in Chapter 4.  In this chapter, the constitutive 

model is considered in the context of the shell formulation and some simplification 

assumptions are introduced. 

Most shell theories adopt the so-called plane stress condition, which assumes that 

the stress normal to a lamina surface, which is defined by fixing ζ  in the interpolation 

given in Equation (2.37) and (2.39), vanishes.  To enforce the constraint, a corotational 

lamina basis is usually constructed at each quadrature points such that one base vector 

say l
3e  is always orthogonal to the other two l

1e  and l
2e  as shell deforms, and the Cauchy 

stress component 033 =lσ  is invoked to condense the material tangent moduli.  Details 

can be found in Hughes et al. [32] and Belytschko et al. [33]. 

In this work, similar approach is adopted but formulated with a Lagrangian 

description.  A lamina basis ( )3,2,1, =il
iE  is constructed at each quadrature point in the 

reference configuration and the plane stress condition is specified in terms of the 2nd 

Piola-Kirchhoff stress as 033 =lS , which in general is different from 033 =lσ  unless the 

lamina normal remains normal after deformation, i.e. l
3EF ⋅  coincides with l

3e .  For 
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fabrics, which are usually quite thin and transverse shear is negligible, the condition 

033 =lS  closely enforces the plane stress constraint. 

As the shell formulation is based on total Lagrangian description, hyperelastic 

constitutive models can be naturally incorporated.  For hyperelastic materials, a strain 

energy function ( )Cψ  exists and the following relation holds 

 
( )
C
C

S
∂

∂= ψ
2 , (2.70) 

where S denotes the 2nd Piola-Kirchhoff stress and FFC T= is the right Cauchy-Green 

deformation tensor, which relates to Green strain as ( ) 21CE −= .  The material 

elasticity tensor is defined as 

 
2

4
ψ∂=

∂ ∂C C
D , (2.71) 

which relates the rate of S to that of E as :=S Eɺ ɺD .   

In this work, St. Venant model, which is a simple extension of linear elasticity, is 

considered and it is given as follows 

 :=S ED  or IJ IJKL KLS E=D . (2.72) 

Since the Green strain E vanishes in rigid body motion, the constitutive model can be 

applied to problems with large rotations, which is the case in macroscale fabric modeling.  

On the other hand, even though the material properties of fabrics are nonlinear, the 

material model is still valid assuming that under normal wearing condition the strains in 

clothing fabrics are small and linear.  With the assumption, St. Venant model is used as a 

placeholder for the constitutive model of the macroscale fabric modeling framework. 

The St. Venant model includes anisotropy and can be easily incorporated in the 

nonlinear shell formulation.  Using Voigt notation as introduced in Belytschko et al [33], 

Equation (2.72) can be written in the following form 
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for fully anisotropic materials.  For an orthotropic material, only 9 moduli are 

independent and the stress-strain relation is 
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And the plane stress constraints, as discussed before, can be enforced using the condition 

033 =lS . 

2.3.1.6 Solution algorithm 

Newton’s method is applied to solve quasi-static problems (2.69).  For a trial 

solution *d , the residual is calculated and the incremental displacement is solved.  The 

procedure is summarized in Box.1. 

For dynamic problems, the spatially discretized system in form of (2.68) is further 

discretized in temporal domain using time integration algorithms.  A widely used method 

is the Newmark method, which is stated as follows:  Given a solution at time step n as 

( )nnn avd ,, , where d, v and a denote nodal vectors of displacement, velocity and 

acceleration, respectively, the solution at next time step n+1 satisfies 

 ( ) ( ) 111 +++ ⋅−= nnextnint adMfdf , (2.75) 

where 
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The internal force is linearized as  

 [ ] ( ) ( ) adKdff
a

∆∆⋅+= 2**
*

tL intint β . (2.77) 

As the consistent mass matrix is deformation dependent, the inertial force ( )ine = ⋅f M d a  

is linearized about a trial *a  as 

 [ ] ( ) ( ) ( )
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*
tL ine β . (2.78) 

The external force is assumed to be deformation independent and the linearization is 

skipped.  The linearized equation of (2.75) is 

 ( ) ( ) ( ) ( ) ( ) ****
*

2*2* adMdffaa
d
dM

dKdM ⋅−−=∆⋅



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
⋅

∂
∂∆+∆+ intexttt ββ . (2.79) 

By defining an effective tangential operator and residual, the equation is simplified as 

 ** ~~
raK −=∆⋅ , (2.80) 

where  
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tt ββ
. (2.81) 

The equation is similar to that of a continuum element except for the term dM ∂∂ . 

Mass lumping is usually adopted to construct a diagonal mass matrix.  The 

motivation is to reduce the computation expense for explicit solution.  By setting 0=β  

in Newmark method, the tangential operator in (2.79) consists of only the mass matrix.  If 

the mass matrix is diagonal, the equation system can thus be solved without factorizing 

the tangential operator.  Various mass lumping schemes have been proposed to construct 
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a diagonal mass matrix, as [32].  In this work, a physical based lumping technique for 

shell is proposed and it is summarized as follows: 

 

( )

( )
0

0

2
0 0

2
2

0 0

,   , 1,2,3

,   , 4,5
12

e

e

e
A

e
A

N d

M
t

N d

χµ

χµ

χµ

λδ ρ χ µ

λδ ρ χ µ

Ω

Ω

 Ω =


= 
 Ω =


∫

∫
 (2.82) 
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and t denotes the shell thickness.  As the lumped mass is a constant, no linearization is 

performed and the effective tangential operator and residual are reduced to 
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1. Initialization: set increment count 0=n and initial trial solution 0d =n  
2. Solve for load/time increment 1+n  

a. Form a trial solution ndd =*  
b. Compute residual ( ) extint fdfr −= *  
c. Construct tangential stiffness ( )*dK  
d. Solve incremental displacement ( ) rdKd ⋅−=∆ −1*  
e. Update the trial ddd ∆+= **  
f. Check convergence: 

� Update residual ( ) extint fdfr −= *  
� If ( ) RTOL≥*dr  then go to 2c. 

3. Update solution *1 dd =+n  
4. Set 1+= nn  and go to 2. 

Box 1: Newton’s method 
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In structural dynamics, damping is usually introduced to represent the energy 

dissipation in a system.  A common practice is to add a viscous damping matrix C into 

(2.75) and the system reads 

 ( ) ( ) 1111 ++++ ⋅−=⋅+ nnextnnint adMfvCdf . (2.84) 

Rayleigh damping is assumed to be proportional to the mass and stiffness, i.e. 

KMC ba += .  In general, realistic damping is related to the material properties and the 

damping matrix should be derived based on the constitutive model adopted.  For 

example, Rayleigh damping can be derived from a Kelvin-Voigt viscoelastic constitutive 

model for linear problems as illustrated by Hughes in [32].  In this work, Rayleigh 

damping is adopted as a placeholder before a fabric constitutive model with realistic 

dissipation feature is available.  A modification is that the damping is assumed to be 

proportional to the material stiffness part MK only and the geometrical part GK  is not 

damped.  In addition, the mass matrix and material stiffness matrix are assumed to be 

fixed based on the converged solution of the previous time step and are not linearized in 

the current solution phase.  The damping matrix is given as ( )n
Mba dKMC +=  and the 

effective tangential operator and residual in (2.74) are given as follows  
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tbtat ααβ
. (2.85) 

Various assumptions on mass, damping and linearization yield various effective 

tangential operators and residual vectors as given in (2.81), (2.83) and (2.85).  The 

linearized equation (2.80) is then solved in the framework of the Newmark method, 

which is outlined in Box 2. 

The stability conditions of the Newmark method are considered and they 

constraint the maximum allowable time step for time integration.  A detailed discussion 

on the subject is presented by Hughes [32].  For central difference time integration, i.e. 

1 2α =  and 0β = , the critical time step is given by  
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t
ω

∆ ≤ . (2.86) 

max
hω  is bounded by the maximum frequency of the individual elements and an estimate is 

given by  

 max

2h c

h
ω = , (2.87) 

where h is the element dimension and c E ρ=  is the bar-wave velocity, in which E is 

Young’s modulus and ρ is density. 

 

1. Initialization: set increment count n=0 and initial state 0d , 0v and 0a  

2. Solve for load/time increment 1+n  
a. Form predictors  
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d. Solve incremental displacement  

( ) *1* ~~
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e. Update predictors 

addavvaaa ∆∆+=∆∆+=∆+= 2******  ; ; tt βα  

f. Check convergence: 
� Update residual *~r  

� If RTOL≥*~r  then go to 2c. 

3. Update solution *1*1*1 ,, ddvvaa === +++ nnn  

4. Set 1+= nn  and go to 2. 

Box 2: Newmark method 
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2.3.2 Test problems 

The shell element developed above has been tested with some benchmark 

problems and the results are summarized here. 

2.3.2.1 Clamped square elastic plate with point load  

A square plate of thickness 0.1t m=  is modeled in quarter-symmetry.  A point 

load is applied at the center of the plate.  An exact analytical solution using thin plate 

theory gives the vertical deflection at the plate center as  

 
2

3
3

0.611
5.60 10c

b P
m

Et
δ −= − → − ×  

where 1.092E Mpa= , 1P N= , 10b m=  is the edge length.  The plate is modeled by 64 

shell elements and the result is 35.62 10 m−− × .  The deformation is shown in Fig.10a. 

 

Figure 10: Test problems for the shell element 

2.3.2.2 “Roll-up” problem 

In this problem, a cantilever beam modeled by the shell element is rolled up by a 

monotonically increasing rotational angle prescribed on the free end.  The resultant 

(a) Clamped square plate problem (b) Beam “roll-up” problem 
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moment is monitored and it is compared well with the analytical solution.  Circular 

curvature is observed in the deformed configuration as shown in Fig.10b. 

2.4 Particle methods vs. finite element methods 

Two alternative macroscale fabric modeling techniques have been implemented 

and tested in our clothing modeling framework:  The first is a particle-based method that 

starts directly with a discrete representation of fabric as a system of mass points and 

springs.  The second is based on finite element methods, where the local equilibrium 

conditions and constitutive relations are employed as a point of depart.  Although the two 

techniques boil down to similar global equation systems in terms of nodal forces and 

displacements, the difference in their specifications on discretization implies distinct 

mechanics phenomena. 

In essence, with particle methods fabric is treated as a fish-net, while with finite 

element methods the contribution from the entire surface is considered.  Consequently, 

for particle methods, as the spatial “fish-net” discretization of a garment is refined, the 

masses and spring stiffness must be adjusted accordingly, and this is not necessarily a 

trivial matter when dealing with fabric patches of irregular shape and size.  The vague 

physical meaning of spring stiffness in particle methods also makes it difficult to translate 

between fabric spring forces in such models and the actual stress level in the fabric being 

modeled.  Ad-hoc assumptions need to be made to answer these types of questions. 

Finite element methods follow a more rigorous mathematical development by 

considering the local equilibrium conditions and constitutive relations.  The global 

discrete system is derived using the well-defined Galerkin approximation, where the 

solution space is approximated by the linear combination of nodal shape functions.  The 

nodal force and displacement relation in the discretized model is derived by exact spatial 

integration of the local constitutive relations.  The physical significance of the spatial 

integration is that the nodal forces include the contribution of the entire surface or domain 
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rather than the vaguely-defined “fishnet” representation.  Moreover, as the spatial 

integration explicitly defines the relation between the local constitutive behaviors and the 

global nodal forces, the fabric stresses and strains can be handled more rigorously and 

straightforwardly than in particle models.  On the other hand, since finite element 

methods are continuously performing spatial integrations of stresses and strains, such 

methods are more computationally intensive than particle methods, which do not require 

any spatial integration at all. 

Depending on the objective, both techniques can be applied to macroscale fabric 

modeling.  As illustrated in Fig.8, by experimenting with the spring stiffness and mass 

properties in a particle model, simulations of clothing that appear visually realistic can be 

achieved.  However, if the objective of the modeling is to realistically quantify the 

mechanical resistance that the clothing exerts on the wearer, visual realism alone will not 

be sufficient.  For this reason, the continuum degenerated shell formulation implemented 

and tested in the current framework is somewhat more attractive to the authors.  

Specifically, one can insert realistic constitutive material models for fabrics into the 

continuum shell framework, thereby increasing the likelihood of calculating more 

realistic mechanical resistance parameters.  Indeed, mechanical realism is paramount in a 

clothing modeling framework used in designing protective systems for defense and 

security applications.  

It is arguable that fabrics possess discrete mesoscale yarn structures and that it is 

not appropriate to model fabrics using degenerated shell theory, which assumes material 

continuity and models the bending behavior by integration through the thickness.  This 

argument could well be true and deserves further investigation.  However, the advantage 

of finite element methods is their unambiguous specification on the discretization 

scheme, which is required when realistic material responses are being investigated.  The 

material discontinuity issue, if it were indeed a problem, can be treated by appropriate 

constitutive models and/or resultant shell formulations.  
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CHAPTER 3  

CONTACT COMPUTATION 

A major component in fabric/clothing modeling is contact computation, which 

enforces the impenetrability and friction constraints associated with contact surfaces and 

calculates the mutual tractions between them.  In fabric/clothing modeling, contact 

problems can be found on both macroscale and mesoscale.  On the macroscale, clothing 

cannot penetrate the skin of a wearer and it interacts with the wearer by exerting tractions 

on the contact surface.  On the mesoscale, many fabrics are structures of interwoven 

yarns and the interactions between contacting yarns significantly affect the overall 

mechanical properties of the fabrics.  Contact computation is thus needed on both scales 

for the fabric modeling framework. 

In this chapter, contact computation approaches utilized in this study are 

discussed.  A general formulation for multi-body contact problems is presented first.  The 

kinematics of contact surfaces and the contact constraints, such as impenetrability and 

friction, are introduced and regularization techniques to enforce these constraints are 

described.  Then details on contact computation for the fabric modeling framework are 

presented.  Since the foci of the macroscale and mesoscale contact computations are 

slightly different, they employ different solution approaches.  An explicit approach is 

developed to solve the macroscale contact problem, where the whole framework is based 

on a dynamic shell formulation and robustness is the major concern.  An implicit 

approach is adopted for the study of mesoscale yarn interactions, where quasi-static 

responses of the model are the main focus. 

Another topic associated with contact computation is collision detection, which in 

general, detects penetration between two surfaces.  Depending on the specific surface 

descriptions, the cost for collision detection varies.  In finite element computation, where 

surfaces are usually described as meshes composed of quadrilaterals and triangles, the 
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collision detection can be expensive.  Some surfaces can alternatively be defined as scalar 

functions of spatial coordinates, i.e. implicit surface.  The cost for collision detection with 

implicit surfaces is much lower but the tradeoff is that these surfaces are relatively simple 

and may not be able to realistically represent complex shapes.  Efficient collision 

detection still remains its own challenge and an active research topic, e.g. [36,37].  It is 

thus not pursued in this study, and instead, standard collision detection techniques are 

adopted as placeholders.  However, the idea of using implicit surfaces is explored here to 

make the macroscale contact computation more affordable. 

3.1 Contact computation 

3.1.1 Problem statement 

To keep the discussion general, contact between multiple deformable bodies is 

considered.  Special cases, such as the rigid obstacle problem, where a deformable body 

interacts with a rigid surface, and the self-contact problem, where different portions of a 

deformable body interact, can be readily included in this formulation.  The discussion 

here follows mostly Laursen and Simo’s work [38]. 

Consider two deformable bodies, denoted in their respective reference 

configurations by ( )
0
i nsdΩ ⊂ ℝ , where nsd denotes the number of spatial dimensions and 

the superscript 1,2i =  indicates one of the two bodies.  Subsequent configurations in a 

time interval [ ]0,T  are given by mapping [ ]( ) ( ): 0,Ω × →ℝi i nsdTφ .  The motions of the 

two bodies are given by ( )( ) ,  ii tφ .  At any time instant [ ]0,t T∈  the configurations can 

be denoted as ( )i
tφ , ( 1,2)i = .  For a material point ( )

0
i∈ΩX , its spatial counterpart at t is 

given by ( )( )i
t=x φ X .  Assume that a pair of potential contact boundaries is designated 

(1) (1)
0Γ ⊂ ∂Ω  and (2) (2)

0Γ ⊂ ∂Ω , which includes all material points where contact might 

occur.  The current positions of the contact boundaries are given by ( )( ) ( ) ( )i i i
tγ = Γφ , 

( 1,2)i = . 
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The equilibrium of each body is governed by the same local equations for a single 

body as those given in Chapter 2.  For body i, the equations are summarized as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )
, 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( )

 in 

 on 

 on 

i i i i i i
kJ J k k

i i i i
kJ J k t

i i i
k k u

P b u

P N t

u u

ρ ρ + = Ω
= Γ 
= Γ 

ɺɺ

,  (i not summed) (3.1) 

where ( )i
kJP  is the 1st Piola-Kirchhoff stress in body i; ( )i

tΓ and ( )i
uΓ  denote the natural 

boundary and the essential boundary of the body, respectively.  In addition, tractions also 

develop on the contact boundaries ( )iΓ  when the two bodies are in contact and interact 

with each other.  

By introducing an admissible variation of the configuration ( ) ( )i iδ ∈φ U  for each 

body i, with ( )i
U  consisting all smooth admissible variations which vanish on the 

essential boundaries, (i.e. ( )iδ =φ 0  on ( )i
uΓ ), and by integrating the product of the 

variation and (3.1)1 over ( )
0Ω i , the weak form of each body i can be derived following 

integration by parts as follows: 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ),i i i i i i i
t int ext ine cntW W W W Wδ δ δ δ δ δ= − + =φ φ  (3.2) 

with  

 

( )
0

( ) ( )
0

( )
0

( ) ( ) ( ) ( )
, 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

( ) ( ) ( ) ( ) ( )
0 0

, internal virtual work;

,  external virtual work;

,  inertial virtua

i

i i
t

i

i i i i
int k J kJ

i i i i i i i i
ext k k k k t

i i i i i
ine k k

W P d

W b d t d

W u d

δ δϕ

δ δϕ ρ δϕ

δ δϕ ρ

Ω

ΓΩ

Ω

= Ω

= Ω + Γ

= Ω

∫

∫ ∫

∫ ɺɺ

( )

( ) ( ) ( ) ( )

l work;

, contact virtual work.
i

i i i i
cnt k kW t dδ δϕ

Γ

= Γ∫

 

( )( ) ( ) ( ),i i i
tWδ δφ φ  is the sum of internal virtual work and the virtual work due to inertial 

forces minus the external virtual work and it should vanish if no contact tractions exist as 

was true for the single body case in Chapter 2.  For contact problems, the total virtual 

work ( )( ) ( ) ( ),i i i
tWδ δφ φ  is equal to the virtual work done by the contact tractions on 
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boundary ( )iΓ , ( )i
cntWδ .  Equation (3.2) must therefore hold for each body i at any instant 

of time t. 

The weak equilibrium condition of two bodies in contact is obtained by 

combining (3.2) for both bodies and is written as: 

 
( ) ( ) ( )

(1) (2)

(1) (1) (1) (2) (2) (2)

(1) (1) (1) (2) (2) (2)

, , ,t t tW W W

d d

δ δ δ δ δ δ

δ δ
Γ Γ

= +

= ⋅ Γ + ⋅ Γ∫ ∫

φ φ φ φ φ φ

φ t φ t
, (3.3) 

the right hand side represents the contact virtual work integrated over the contact 

boundary (1)Γ  and (2)Γ .  The notation tφ  indicates the collection of ( ) , ( 1,2)i
t i =φ  and 

likewise for δφ .  Considering the fact that (2) (2) (1) (1)d dΓ = − Γt t  at the contact point, the 

right hand side of Equation (3.3) can be combined as a single integral over one surface 

and Equation (3.3) can be written as 

 ( ) ( ), , 0t C tW Wδ δ δ δ+ =φ φ φ φ , (3.4) 

where  

 ( ) ( )
(1)

(1) (1) (2) (1),C tW dδ δ δ δ
Γ

= − ⋅ − Γ∫φ φ t φ φ  (3.5) 

Utilizing the arbitrariness of the variation δφ , Equation (3.4) can be solved for tφ  

provided that the contact traction (1)t  is known.   

The key to contact computation is determination of the contact boundary and the 

contact traction (1)t , which are both unknown prior to solving the problem.  The traction 

is determined by considering the impenetrability and friction constraints of the contact 

boundaries ( ) , ( 1,2)i iγ = . 

3.1.2 Frictionless contact problems 

For frictionless contact, the contact traction involves only the normal component 

and it can be written as  

 (1) = Ntt n ,  (3.6) 
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where n denotes the inward normal to the surface (1)γ  and Nt  depends on the 

interpenetration of the two bodies.  It should be noted that as a point of contact, the 

inward normal to (1)γ  coincides with the outward normal of (2)γ . 

3.1.2.1 Impenetrability constraint 

In the contact computation literature, a contact pair is usually designated as a 

slave surface (1)Γ  and a master surface (2)Γ , and the impenetrability constraint is 

enforced such that no material point on the slave surface, i.e. (1)∈ΓX , is allowed to 

penetrate any part of the master surface ( )(2) (2) (2)
tγ = Γφ  at any time t.  The master-slave 

designation does introduce bias by allowing master nodes to penetrate the slave surface.  

However, this unsymmetrical behavior can be eliminated by alternating the roles of 

master and slave of the surfaces. 

The penetration is usually quantified by identifying the closest projection point of 

a slave node onto the penetrated master surface.  For example, in [38] the penetration is 

defined by a gap function as follows: 

 ( ) ( )( ) ( ), sign , ,=s s sg t g t g tX X X , (3.7) 

where  

 ( ) ( ) ( )
(2)

(1) (2), min , ,
∈Γ

= −
m

s s mg t t t
X

X φ X φ X  (3.8) 

and 

 ( )( ) ( )(1)1,  if , is admissible;
sign ,

1,   otherwise.
s

s

t
g t

−= 


φ X
X   

For any point (1)∈ΓsX , the point (2)∈ΓmX  achieving the minimum, which is denoted by 

mX , is obtained by finding the closest projection of ( )(1)=s t sx φ X  onto (2)γ .  Since the 

identification of mX depends implicitly on the material point sX  and time t, it can be 

written as ( ),=m m s tX X X .  The gap function can be rewritten as follows 
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 ( ) ( ) ( )( )(1) (2), , , , = − − ⋅ s s m sg t t t tX φ X φ X X n , (3.9) 

where n is the outward normal to (2)γ  at the material point mX .  The impenetrability 

constraint is mathematically stated as  

 ( ), 0≤sg tX . (3.10) 

Since the contact surfaces are usually not bonded and free to separate, no tensile 

normal contact traction is permitted, which yields the condition 

 ( ), 0≥N st tX . (3.11) 

The normal contact traction depends on the interpenetration of the two bodies.  When 

0Nt > , no penetration is allowed and 0g = ; while when 0g < , i.e. the two bodies are 

not in contact, there is no contact traction and 0Nt = .  This relationship can be 

summarized as follows 

 ( ) ( ), , 0=N s st t g tX X . (3.12) 

In addition, a persistency condition is written as  

 ( ) ( ), , 0=ɺN s st t g tX X , (3.13) 

which implies that when the two bodies interact, i.e. 0Nt > , the change of the penetration 

remains zero, i.e. 0g =ɺ .  The equations (3.10)~(3.13) are usually called the Kuhn-Tucker 

conditions for normal contact and the normal contact traction magnitude can be 

determined from them. 

According to the gap function expression given in (3.9), it can be verified as in 

[38] that for a variation in configurationδφ , the variational penetration is 

 ( ) ( )( )(1) (2)
s mgδ δ δ= − ⋅ −n φ X φ X , (3.14) 

which when substituted in (3.5) and combined with (3.6) yields a compact form for the 

contact virtual work as follows 

 ( )
(1)

(1),C t NW t gdδ ϕ δ δ
Γ

= Γ∫φ . (3.15) 
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3.1.2.2 Discretization 

In finite element computation, the surfaces are usually discretized as meshes and 

the discrete forms of the gap function (3.9) are thus considered.  For example, a master 

surface can be represented by a mesh of quadrilaterals.  Assume that each quadrilateral or 

segment, a term commonly adopted in the literature of contact computation, is defined by 

bi-linear isoparametric mapping as 

 ( )
4

1=
=∑m I mI

I

Nx ξ x , (3.16) 

where ( )1 2,ξ ξ=ξ  denotes the natural coordinates bounded as [ ]1 2, 1,1ξ ξ ∈ −  and ( )IN ξ  

is the nodal interpolation function  

 ( ) ( )( )1 1 2 21
1 1

4I I IN ξ ξ ξ ξ= + +ξ . (3.17) 

According to (3.16), the closest projection point ( )(2)=m mx φ X  can then be interpolated 

as 

 ( )
4

1=
=∑m I mI

I

Nx ξ x , (3.18) 

where ξ  denotes the natural coordinates of the projection point.  ξ  in general is a 

function of the current configuration tφ  and in the discrete setting it depends on the 

current positions of the slave node and associated master nodes.  The details on the 

determination of ξ  are presented in Section 3.2.1. 

With the discretization, the gap function can be written as  

 = − ⋅T e
eg N x , (3.19) 

where 
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( )
( )
( )
( )

1

2

3

4

 
 
− 
 
−=  
 
− 
 
−  

e

N

N

N

N

n

ξ n

ξ nN

ξ n

ξ n

 and 
1

2

3

4

 
 
 
 =
 
 
  

s

m

e
m

m

m

x

x

x x

x

x

, (3.20) 

Likewise, the variation of the gap function in discrete form reads as 

 δ δ= − ⋅T e
eg N Φ  (3.21) 

where δ eΦ  denotes the nodal variation  

 

( )
( )
( )
( )
( )

(1)

(2)
1

(2)
2

(2)
3

(2)
4

δ
δ

δ δ
δ
δ

 
 
 
 =
 
 
 
 

s

m
e

m

m

m

φ X

φ X

Φ φ X

φ X

φ X

. 

A schematic of the impenetrability condition for bilinear master segment interpolation is 

shown in Fig.11. 

 

Figure 11: A schematic of the impenetrability constraint for a bilinearly interpolated 
quadrilateral 

sx  
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Each slave node and the master segment it penetrates can be treated as a contact 

element and the contact virtual work given in (3.15) is calculated as a sum of 

contributions from all the contact elements as 

 
(1)

(1)  with  δ δ δ δ
Γ

= = Γ∑ ∫
e

e e
C C C N e

e

W W W t gd , (3.22) 

where (1)Γe  is the domain associated with a slave node.  For each element, if it is assumed 

that Nt  is known, a contact force vector can be constructed by invoking the arbitrariness 

of δ eΦ  as 

 
(1)

(1)

Γ

= − Γ∫
e

cnt
e N e et df N . (3.23) 

Since the vector eN  depends on the configuration through the identification of ξ  and n, 

the contact force vector is a function of both configuration and Nt .  A global contact 

force vector can be constructed by assembling the contribution from each element as  

 ( )=Acnt cnt
e

e
f f . (3.24) 

Likewise, by assembling the gap function (3.19) for each contact element as a vector, the 

impenetrability constraint in discrete form can be written as  

 = ⋅ ≤g G x 0 , (3.25) 

where = +x d X  is the updated nodal position vector and 

 ( )T
e

e
= −G NA  (3.26) 

is usually called contact constraint matrix, which is assembled from the vector eN  given 

in (3.20) for each contact element.  Since eN  depends on the updated nodal position 

through the identification of ξ , the contact constraint matrix is a function of d, i.e. 

( )=G G d . 
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3.1.2.3 Penalty formulation 

In penalty formulation, a penalty parameter Nε  is introduced to penalize a 

violated constraint.  The normal traction is assumed to be  

 N Nt gε= , (3.27) 

where ( ) 2= +� � �  is the Macauley bracket function.  For an admissible position, i.e. 

0g ≤ , 0Nt = .  While when 0g > , where a penetration occurs, a penalty normal traction 

0N Nt gε= >  is applied to push the penetrating pair apart.  Compared to the Kuhn-Tucker 

conditions, the penalty method is exact only when Nε → ∞ .  For a finite penalty 

parameter, penetration is allowed.   

The advantage of the penalty formulation is that since the normal contact traction 

Nt  is a function of deformation as indicated by (3.27), the only unknown in (3.4) is tφ .  

By introducing a finite element discretization and considering the arbitrariness of δφ , a 

nonlinear equation system in terms of the nodal displacement vector d can be derived as 

follows: 

 ( ) ( )int cnt ext+ ⋅ + =f d M a f d f , (3.28) 

where cntf is a force vector contributed by contact traction and =a dɺɺ  is the nodal 

acceleration vector.  For simplicity, the external force and the mass matrix above are 

assumed to be deformation independent.  The nonlinear system of equations can be 

solved by the Newton’s method or some variation thereof. For dynamic problems, the 

accelerations can be integrated by a Newmark time integration scheme.  Consistent 

linearization of the contact forces is needed for implicit solution methods and some 

development on this issue is presented in [38,39]. 

3.1.2.4 Lagrange multiplier methods 

Instead of assuming that normal contact tractions are functionally dependent on 

the penetration as is done in penalty formulations, Lagrange multiplier methods treat the 
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traction Nt  as an unknown independent of the deformation tφ .  The unknown is usually 

denoted as a Lagrange multiplier Nλ .  By assembling the Lagrange multiplier for each 

contact element as a vector λ , the discrete equilibrium equation can be written as follows 

 ( ) ( )+ ⋅ + ⋅ =  
Tint extf d M a G d λ f , (3.29) 

where G is given by (3.26).  The operation T ⋅G λ  distributes the Lagrange multipliers 

Nλ  to the associated master and slave nodes and yields an equivalent nodal force vector 

due to contact. 

As the Lagrange multipliers introduce additional unknowns to the system of 

(3.29), the impenetrability constraint (3.25) is considered to augment the system.  A slave 

node can either be in contact with the master surface, which corresponds to the equality 

constraint 0g = , or free from contact, which corresponds to the inequality constraint 

0g < .  Assuming that the set of the slave nodes in contact is available, (i.e. those with 

equality constraint activated), the impenetrability constraint given in Equation (3.25) is 

equivalent to the following discrete equality constraint 

 ( ) ⋅ =G d x 0 . (3.30) 

Given ξ , Equation (3.30) literally projects a slave node from its penetrating position sx  

to mx , and the procedure can be conceptually written as ( )=m sprojx x . 

To determine the active slave node set, a trial-and-error procedure is usually 

adopted.  By assuming an initial trial set and constructing G based on the trial, Equations 

(3.29) and (3.30) are solved simultaneously for the nodal displacements and the Lagrange 

multipliers.  If a Lagrange multiplier is negative, which indicates a tensile traction 

developed at the slave node, the slave node is removed from the active set.  A new 

computation is restarted with the modified active slave node set.  The trial-and-error 

procedure iterates until both the equilibrium conditions and the impenetrability 

constraints are satisfied. 
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3.1.3 Frictional contact 

Friction usually exists between contact surfaces and in general the tangential 

components of contact tractions are nonzero.  The frictional traction depends on the 

relative motion of the contact surfaces.  Static friction occurs when there is no relative 

motion between the two surfaces while kinetic friction occurs when the surfaces slide 

against each other.  Friction laws are formulated to describe the relationships of the 

frictional traction and the relative motion of the contact surfaces.  A simple example is 

the Coulomb friction law, where the static friction is assumed to be bounded by a critical 

value and the kinetic friction is proportional to the magnitude of the normal traction with 

its direction opposite to the slip direction. 

In this work, the frictional contact formulation proposed by Simo and Laursen 

[38] is adopted.   In their formulation, a convected basis is constructed to describe the 

frictional traction and the slip rate and the friction law is frame indifferent.  Their work is 

based on a continuum framework and can be readily extended for a spatial discretization.   

3.1.3.1 Surface parametrization and convected basis 

The contact surfaces ( )iΓ  and ( )( ) , 1,2i iγ =  can be parameterized as follows 

 ( )( ) ( ) ( )
0Γ =i i iΨ A  and ( )( ) ( ) ( )γ =i i i

tΨ A , (3.31) 

where ( ) 1−⊂ ℝi nsd
A  and ( ) ( ) ( )

0= �
i i i

t tΨ φ Ψ  with �  denoting composition.  According to the 

parametrization, for any point (2)∈ΓmX , one has ( )(2)
0=mX Ψ ξ  where (2)∈ξ A  denotes 

the natural coordinates.  Likewise for (2)γ∈mx , one has ( )(2)=m tx Ψ ξ .  The bi-linear 

isoparametric mapping given in (3.16) can be viewed as a special case of the 

parametrization. 

With the parametrization, convected bases are defined as partial derivatives of the 

mapping with respect to the natural coordinates: 

 ( ) ( )(2)
0

α αξ
∂

=
∂
Ψ ξ

E ξ   (3.32) 
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and  ( ) ( ) ( )( ) ( )
(2)

(2) (2)
0α ααξ

∂
= =

∂
t

t

Ψ ξ
e ξ F Ψ ξ E ξ ,    ( 1,2)α = , (3.33) 

where (2)
tF is the deformation gradient corresponding to (2)

tφ .  By introducing the 

notation ξ , the material point achieving the minimum in (3.8) can be written as  

 ( )(2)
0=mX Ψ ξ   (3.34) 

and its spatial counterpart, i.e. the closest projection of ( )(1)= tx φ X  on (2)γ , is obtained 

similarly as 

 ( )(2)=m tx Ψ ξ . (3.35) 

The convected base vectors at ξ  are denoted by  

 ( )α α=T E ξ  (3.36) 

and ( )α α=τ e ξ . (3.37) 

The outward normal used in the previous section can be readily obtained by 

 1 2

1 2

×=
×

τ τ
n

τ τ
. (3.38) 

3.1.3.2 Frictional kinematics 

The slip rate is derived by considering the time rate of the change of the relative 

position between ( )(1)=s t sx φ X  and ( )(2)=m t mx φ X .  When 0>Nt , according to (3.12) 

and (3.13), one has 0=g  and 0=ɺg , which indicates that 

 ( ) ( )( )(1) (2), , , 0 − = s m s

d
t t t

dt
φ X φ X X . (3.39) 

Using the chain rule, the time derivative yields the following expression for the relative 

velocity 

 ( ) ( )( ) ( ) ( )(1) (2) (2), , , , − =  s m s t m m s

d
t t t t

dt
V X V X X F X X X , (3.40) 



 

 

56 

where the right hand side is related to the change of material point mX  due to the relative 

sliding of the contact surface.  A geometric object is defined as  

 ( ) ( ), , α
αξ = = 

ɺ
T s m s

d
t t

dt
X X X TV , (3.41) 

which represents the relative velocity in the convected description.  The dual of the object 

can be written as  

 ( ), β α
αβξ= ɺb

T s t MX TV , (3.42) 

where αβ α β= ⋅M T T  is the metric and α α
β βδ⋅ =T T .  Pushing forward the dual yields the 

spatial relative velocity, i.e. the slip rate 

 ( ), β α
αβξ= ɺb

T s t Mv X τ . (3.43) 

3.1.3.3 Frictional contact constraints 

The frictional contact traction includes both normal and tangential components 

and it can be written as  

 (1) = − b
N Ttt n t , (3.44) 

where the tangential traction b
Tt  can be expressed in terms of the convected basis as  

 
α

α=b
T Ttt τ . (3.45) 

Assuming the Coulomb friction law for the frictional traction and the slip rate, the 

following conditions hold: 
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≥ 
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t
v

t  (3.46) 
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where µ  is the friction coefficient and ζ  is the magnitude of the slip rate.  According to 

the friction law, slip occurs along the direction of b
Tt  when µ=b

T Ntt ; Otherwise stick is 

found if µ<b
T Ntt .   

With contact tractions expressed as (3.44), the contact virtual work (3.5) can be 

written as  

 ( ) ( ) ( )
(1)

(1) (2) (1),
α

αδ δ δ δ
Γ

= − − ⋅ − Γ∫C t N TW t t dφ φ n τ φ φ . (3.47) 

It can be verified (as in [1] or Appendix A) that when 0=g ,  

 ( ) ( )( )(1) (2)α αδξ δ δ= ⋅ −s mτ φ X φ X , (3.48) 

which together with (3.14) yields 

 ( ) ( )
(1)

(1),
α

αδ δ δ δξ
Γ

= + Γ∫C t N TW t g t dφ φ . (3.49) 

3.1.3.4 Penalty regularization 

The tangential frictional tractions b
Tt  are determined by the friction law (3.46).  

The analogy of the friction law (3.46) with plasticity can be easily identified.  (3.46)1 is 

analogous to the yield condition and (3.46)2 can be interpreted as a flow rule.  By 

introducing a tangential penalty εT , (3.46) can be regularized as  

 

: 0

1

0

0

b
T N

b
b bT
T v Tb

TT

tµ

ζ
ε

ζ
ζ

Φ = − ≤



− = 



≥ 
Φ = 

t

t
v t

t
L

, (3.50) 

where in (3.50)2 α

α= ɺb
v T Ttt τL  is the Lie derivative of the tangential traction α

Tt .  When 

0Φ < , one has 0ζ =  and Equation (3.50)2  becomes ε=b b
v T T Tt vL , which is similar to 

elastic loading in plasticity.   
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With (3.50), a return mapping algorithm can be derived to integrate the friction 

law.  Given an incremental displacement from time step n to the next step n+1, a trial 

state is first constructed by assuming that the stick condition is satisfied.  If (3.46)1 is 

violated with the trial, a return mapping is applied.  Assume that the normal component 

of the contact traction is regularized by penalty formulation (3.27), the equations for 

return mapping can be summarized as follows: 

       Trial state:       

1

1

1 1

1

*
1

* *
1

n

n n

n n

N N n

T T T n n

b
n T N

t g

t t M

t

α α

β β
αβ

ε

ε ξ ξ

µ

+

+

+ +

+

+

+

=

 = + − 

Φ = −t

 (3.51) 

       Return mapping: 

1

1 1

1

1

* *
1

*

*

,   if 0  (stick);

,   otherwise  (slip).

n

n n

n

n

T n

T T

N b
T

t

t t
t

α

α αµ

+

+ +

+

+

+ Φ ≤
= 

 t

 (3.52) 

The details of the algorithm were presented by Simo and Laursen in [38].  Consistent 

linearization of the algorithm produces unsymmetrical tangent operators and the reason is 

due to the nonassociativity of (3.46)2.  More discussions on this were also made in [38].  

An algorithmic symmtrization technique based on augmented Lagrange multiplier 

method was proposed in [40] and the technique is adopted for the mesoscale yarn 

interaction study, which will be introduced in Section 3.4. 

3.2 Collision detection 

3.2.1 General mesh-to-mesh collision detection 

For contact computations, given the position of a slave node, sx , it is necessary to 

identify its closest projection point mx  on a master segment, based on which the 

penetration and the relative sliding between the slave node and the master segment are 

calculated.  The identification procedure is usually called collision detection.  For a 
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general mesh-to-mesh contact scenario, the collision detection usually takes three steps as 

outlined by Hallquist et al. [44,45]: 

3.2.1.1 Nearest neighbor searching  

In this step, the master node that is closest to a given node is identified.  For a 

problem with M master nodes and N slave nodes, the total complexity of the global 

search involves a complexity of ( )O MN .  Spatial locality may be utilized to reduce the 

cost to ( )O N  by assuming that the nearest neighbor at the next time step is in the 

neighborhood of the current closest node.  However, this assumption is not valid if 

contact surfaces are highly distorted. 

3.2.1.2 Master segment searching 

Multiple master segments surround the master node and the objective of this step 

is to determine the active segment which contains the projection of the slave node.  

Assume that the position of the slave node and the master node is denoted by sx  and y , 

respectively.  The following conditions were proposed by Hallquist et al. [44,45] to 

identify which of the segment if any contains the projection  

 ( ) ( )1 1 2 0× ⋅ × >c s c c  and ( ) ( )1 2 0× ⋅ × >c s s c , (3.53) 

where 1c  and 2c denote the edges of the segment as shown in Fig.12.  Assuming that the 

position vector of sx  relatively to y  is denoted by = −sp x y , the vector s is the 

projection of the relative position vector onto the segment.  It is determined as follows 

 ( )= − ⋅s p p t t , (3.54) 

with 

 = −sp x y    and   1 2

1 2

×=
×

c c
t

c c
, (3.55) 

where vector t is the outward normal to the segment considered at point y.   
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For a pair of slave and master nodes determined from the nearest neighbor 

searching in the previous step, the conditions given in (3.53) are applied to each master 

segment that connects the master node.  Depending on the local convexity and/or 

concavity of the master surface, the conditions in (3.53) can be satisfied by multiple 

segments or none and thus become inconclusive.  In these cases, the slave node is usually 

projected onto the intersections of segments.  A detailed discussion on this issue is 

presented in Section 3.2.2. 

 

Figure 12: A schematic for master segment searching conditions 

3.2.1.3 Projection point calculation 

In this step, the closest projection point of the slave node point sx  onto the master 

segment is calculated.  For a slave penetrating a quadrilateral master segment, the gap 

function definition shown in Fig.11 and expressed in Equation (3.9) is used.  If the 

quadrilateral is defined by a bi-linear isoparametric mapping, i.e. (3.16) and (3.17), the 

natural coordinates of the projection point, ( )1 2,ξ ξ=ξ  will satisfy the following 

conditions: 

1c  

2c  

p  

s  

t  

y  

sx  
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( ) ( )( )
( ) ( )( )

1

2

,

,

0

0

ξ

ξ

⋅ − =

⋅ − =

m s m

m s m

x ξ x x ξ

x ξ x x ξ
. (3.56) 

These equations are nonlinear and can be solved iteratively using Newton’s method for 

ξ .  The tangent vectors , ( 1,2)α α =τ  and the normal vector n are then determined by 

Equation (3.37) and (3.38), respectively.  Based on them, the element level contact 

contributions to the global residual force vector and the global tangent stiffness matrix 

can be computed and assembled. 

3.2.2 Improvements on master segment searching 

3.2.2.1 Segment searching conditions 

The conditions given in Equation (3.53) can be inconclusive in that, for a convex 

master surface, multiple segments may satisfy the conditions, while for a concave master 

surface it is possible that none of the segments satisfies the conditions.  When these 

uncertainties occurs, algorithms specifying which master segment to be considered for 

the subsequent contact computations can significantly affect the final results and even the 

convergence of the solutions.  This issue has been discussed by Laursen in [41] for two-

dimensional problems.  In this section, the discussion is extended to three-dimensional 

problems and a new segment searching algorithm is developed. 

First, a set of conditions is devised, which is equivalent to those in Equation 

(3.53) but with less associated computation expense.  As 1c , 2c  and t are linearly 

independent, the vector = −sp x y  can be written as  

 ( ) ( ) ( )1 1 2 2= ⋅ + ⋅ + ⋅p p c c p c c p t t , 

from which one has 

 ( ) ( ) ( )1 1 2 2= − ⋅ = ⋅ + ⋅s p p t t p c c p c c . (3.57) 

Substituting (3.57) into (3.53) yields 
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( ) ( ) ( )
( ) ( ) ( )( )

2

1 1 2 2 1 2

2

1 2 2 1 1 2

0,

0.

× ⋅ × = ⋅ × >

× ⋅ × = ⋅ ⋅ × >

c s c c p c c c

c s s c p c p c c c
 (3.58) 

Since 
2

1 2 0× >c c , one has 

 1 0⋅ >p c  and 2 0⋅ >p c . (3.59) 

These conditions are equivalent to those of (3.53) but involve only two dot product 

operations, eliminating the need for four cross-product operations. 

3.2.2.2 Two-dimensional problems 

In two-dimensional space, a master node can have up to two surrounding 

segments.  Assume that the two segments are 1c  and 2c , and the projection of = −sp x y  

on the segments are denoted by , ( 1,2)i ip i= ⋅ =p c .  Depending on the relative position of 

the slave node and the master segments, four cases (illustrated in Fig.13) are possible: 

1. 1 20 and 0p p> > , both segments may be active; 

2. 1 20 and 0p p> ≤ , segment 1c  is active; 

3. 1 20 and 0p p≤ > , segment 2c  is active; 

4. 1 20 and 0p p≤ ≤ , the intersection of 1c  and 2c  is the projection and both 

segments are active. 

 

Figure 13: Four cases to determine active master segment 

1c  2c  

Case 1 

Case 2 Case 3  

Case 4 

 y 
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In Case 1, both segments are candidates, posing uniqueness problems.  A 

common practice is to choose the segment involving the minimum penetration as 

mentioned in [41].  An even simpler practice, as introduced in [45], is to choose 

whichever segment that satisfies the condition0ip >  first.  These practices can introduce 

algorithmically biased artifacts to the computations.  By following the time history of the 

slave node’s position relative to the master surface, a better estimate on the actual master 

segment may be obtained.  However, this idea is not further explored here. 

Another issue is associated with Case 4, where both segments are active.  If only 

one constraint is applied as [45], the solution may oscillate as the constraints are 

alternatively activated and deactivated and thus fail to converge.  For example, in the 

following problem (Fig.14) an elastic block is pressed onto a concave rigid surface.  

Node 1 penetrates both segments  1c  and 2c  as the block deforms.  If only one constraint, 

say 1c , is activated, the solution may oscillate between position 1 and 2.  Penetration 

persists and convergence is affected.  To avoid this problem, active constraints should be 

applied simultaneously. 

 

Figure 14: Solution oscillates if only one constraint is applied 

1c  
2c  

sx  

1 2 
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3.2.2.3 Three dimensional problems 

In three-dimensional space, assume that a master node is surrounded by four 

segments.  The four intersections of the segments are denoted by ( ), 1,2,...4i i =c  and the 

projection of = −sp x y  on the intersections are ( ), 1,2,...4i ip i= ⋅ =p c .  Depending on the 

combinations of the signs of ip , there are sixteen possible cases, which can be 

summarized as follows: 

1. ( )0, 1,2,...4ip i≤ = , the slave node projected onto the master node; 

2. ( )0 and 0, , 1,2,...4 and i jp p i j j i> ≤ = ≠ , edge ic  is active; 

3. 1 3 2 4, 0 and , 0p p p p> ≤ , both edge 1c  and 3c  may be active; 

2 4 1 3, 0 and , 0p p p p> ≤ , both edge 2c  and 4c  may be active 

4. 1 2 3 4, 0 and , 0p p p p> ≤ , segment ( )1 2,c c  is active; 

2 3 1 4, 0 and , 0p p p p> ≤ , segment ( )2 3,c c  is active; 

3 4 1 2, 0 and , 0p p p p> ≤ , segment ( )3 4,c c  is active; 

4 1 2 3, 0 and , 0p p p p> ≤ , segment ( )4 1,c c  is active; 

5. 1 2 3 4, , 0 and 0p p p p> ≤ , both ( )1 2,c c  and ( )2 3,c c  may be active; 

2 3 4 1, , 0 and 0p p p p> ≤ , both ( )2 3,c c  and ( )3 4,c c  may be active; 

3 4 1 2, , 0 and 0p p p p> ≤ , both ( )3 4,c c  and ( )4 1,c c  may be active; 

4 1 2 3, , 0 and 0p p p p> ≤ , both ( )4 1,c c  and ( )1 2,c c  may be active; 

6. ( )0, 1,2,...4ip i> = , all four segments may be active. 

If multiple segments or edges are active, it is necessary to apply the constraints 

simultaneously to avoid solution oscillation. 

3.2.3 Collision detection with implicit surfaces 

General mesh-to-mesh collision detection as described in Section 3.2.1 can be 

computationally intensive and a major portion of the expense is due to the global nearest 

neighbor searching, which has a complexity proportional to the number of nodes in both 

surface meshes.  Locality may be utilized by assuming that candidates for nearest 
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neighbors at a time step n+1 belong to the neighborhood of the current nearest neighbors 

at step n.  However, as noted previously, this assumption can be invalid for problems 

where the contact surface meshes are highly distorted.  The other significant bottleneck of 

collision detection is the projection point calculation, where a nonlinear equation system 

such as (3.56) is solved with Newton’s iterations.  Efficient collision detection algorithms 

for general mesh-to-mesh contact still remain an active research topic, e.g.[36,37].  A 

discussion of these algorithms is beyond the scope of this study and thus not presented 

here. 

Some surfaces can alternatively be represented by closed mathematical forms 

instead of discrete polygonal meshes.  Such a surface is usually named as an implicit 

surface, which is defined by a scalar function of spatial coordinates as ( ) 0=f x .  Given 

a spatial point x, the sign of the function value indicates the position of the point relative 

to the surface.   

 

( )
( )
( )

If  0,   lies outside of the surface and is thus admissible;

If  0,   is on the surface;

If  0,   lies inside of the surface and is thus inadmissible.

f

f

f

>

=

<

x x

x x

x x

 (3.60) 

An example of an implicit surface is an ellipsoid, which is defined by a scalar function as  

 ( ) ( )[ ] 01
3,2,1

22 =−−=∑ =i i
c
ii rxxf x , (3.61) 

where ( ), 1,2,3=c
ix i  denotes the center of an ellipsoid and ir  are the radii along the 

principal axes.  With an ellipsoid, the expense of collision detection is significantly 

reduced.   

3.3 Contact computation for macroscale clothing modeling 

3.3.1 General considerations 

Methods for modeling mechanical interactions between clothing and a wearer are 

studied in this section.  Clothing can interact with a wearer in various aspects, such as 
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weight, size, fit and stretchiness of fabrics etc.  The study here concentrates on the 

contact tractions that clothing exerts on a wearer.  The tractions are treated as 

fundamental quantities, which can be further related to other interaction measures.  To 

quantify the contact tractions between clothing and a wearer, the contact computation 

techniques outlined in Section 3.1 can be utilized although the solution method can be 

simplified somewhat based on the considerations described in the following subsections. 

3.3.1.1 Signorini’s problem 

The problem is to calculate the time history of the contact tractions that clothing 

exerts when a wearer goes through given motions.  For simplification, two assumptions 

are adopted.  First, the body surface of the wearer is assumed to be rigid, which excludes 

the possibility of body deformation introduced by clothing.  Second, the motions of the 

wearer are prescribed and do not change in response to the clothing interactions.  These 

two assumptions limit the problem to a unilateral scenario, where clothing passively 

responds to the evolutions of a rigid body surface, which in contact literature is classified 

as a “rigid obstacle problem” or a Signorini problem.  These assumptions can be removed 

if a deformable human body model is available and if the sensitivity of human motions to 

clothing resistance is understood.  However, these assumptions are currently invoked to 

reduce the complexity of the problem. 

3.3.1.2 Expense of collision detection 

As mentioned in Section 3.2, mesh-to-mesh collision detection is computationally 

intensive.  A coarse approximation of a complete human body surface mesh may require 

thousands of polygons and that number multiplied by the size of the clothing mesh makes 

the collision detection quite expensive.  To limit the expense, a placeholder human body 

surface definition based on the concept of implicit surfaces is adopted.  In this study, the 

human body surface is approximated by an assemblage of ellipsoids undergoing 

prescribed rigid-body motions and contact computation for macroscale clothing modeling 
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is discussed in the context of a discrete finite element clothing mesh interacting with 

these ellipsoids.  

3.3.1.3 Robustness of solution methods 

The macroscale clothing model is based on the time integration of a dynamic, 

flexible clothing system.  Both explicit and implicit solution methods can be used to 

solve the problem.  In general, explicit methods are capable of capturing transient 

response with very small time steps and are thus preferred for high-velocity problems.  In 

such methods, the nonlinear global equations can be solved at each time increment 

without Newton iterations.  Implicit time integration methods, which are more stable and 

thus allow larger time increments, are mostly applied to solve quasi-static and low-

velocity problems.  Implicit methods generally require Newton iterations to solve the 

global equations at each increment. 

However, for clothing contact problems, an important factor to be considered is 

the robustness of the solution method.  The convergence of an implicit solution scheme 

relies on the consistency between the residual vector and the linearized tangential 

operator.  For problems where complex contact is involved and very large deformations 

occur, the discontinuities in the contact conditions can affect the consistency and thus 

yield convergence difficulties.  For this reason, an explicit solution method is chosen to 

study the clothing-wearer interaction problems. 

3.3.1.4 Penalty formulation  

For a contact problem based on a penalty formulation, variations of the system in 

Equation (3.28) are solved.  As no extra unknowns are introduced, the penalty 

formulation can be readily incorporated into standard finite element solution algorithms, 

such as the Newton’s method (Box 1) and Newmark integration methods (Box 2).  For 

central difference time integration, i.e. 1 2α =  and 0β =  in the Newmark methods 

given in Equation (2.76), one has 
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1 1

2
1

;
2 2

.
2

n n n n

n n n n

t t

t
t

+ +

+

∆ ∆= + +

∆= + ∆ +

v v a a

d d v a

 (3.62) 

The solution algorithm is as follows, (Box 3), where the Step 2.c is the only modification 

introduced to the original integration scheme.  

 

1. Initialization: set increment count n=0 and initial state 0d , 0v and 0a  

2. Solve for load/time increment 1+n  
a. Form predictors  

2
* *;   

2 2
n n n n nt t

t
∆ ∆= + = + ∆ +v v a d d v a  

b. Compute residual  

( )* *ext int= −r f f dɶ  

c. Call collision detection module to identify penetration; calculate penalty force 

( )*cntf d and update the residual vector ( )* * *cnt= −r r f dɶ ɶ . 

d. Construct tangent stiffness, i.e. mass matrix in this case 
* =K Mɶ  

e. Solve for the incremental acceleration  

( ) 11 * *n −+ = − ⋅a K rɶ ɶ  

f. Update the velocity 

1 * 1 1 *;  
2

n n nt+ + +∆= + =v v a d d  

3. Set 1+= nn  and go to 2. 

Box 3: Penalty formulation using central difference integration 

While the penalty formulation has the benefit of not introducing any additional 

unknowns to the analysis problem, a major disadvantage of the penalty formulation is 

ambiguity in the choice of a penalty parameter.  If chosen too small, unacceptable 

penetration results, and if chosen too large, the critical time step size of an explicit time 
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integrator can be significantly reduced.  Some guidelines on choosing appropriate penalty 

parameters were given by Belytschko and Neal in [43].  Another issue in applying a 

penalty formulation in clothing-wearer interaction models is that since the penalty force 

changes discontinuously as penetration occurs and then disappears, a contact node tends 

to bounce on the contact boundary under the influence of the penalty force.  This 

oscillatory response can be intuitively explained by interpreting a contact boundary as a 

stiff cushion of penalty springs, which pushes penetrating nodes away and then releases 

when penetration disappears.  Since the clothing is quite flexible and provides little 

restitution, such oscillatory responses should be avoided.  For these reasons, an explicit 

solution based on Lagrange multiplier methods is developed for the macroscale clothing 

modeling.  

3.3.2 Explicit Lagrange multiplier methods 

For explicit Lagrange multiplier methods, the contact surface can be determined 

directly by projection of the overlapped volume of the bodies updated by uncoupled 

integration without iteration needed.  It was shown by Belytschko and Neal [43] that in 

this case the Lagrange multipliers with correct sign can be determinable directly.  A 

similar approach, namely ‘forward increment Lagrange multiplier’ method was proposed 

by Carpenter et al. [42].  In their approach, a predictor state is first constructed using 

central difference time integration on both bodies neglecting the contact interaction and 

then the Lagrange multipliers that enforce the impenetrability constraints on the predictor 

state are solved.  Consider time stepping from nt  to 1nt + , the equations can be 

summarized as follows  

 
( ) ( )

( )1 0

int n n T n ext n

n

t

+

+ ⋅ + ⋅ = 


⋅ + = 

f d M a G λ f

G d X
 (3.63) 

where the acceleration at time step nt  is decomposed into a predictor part and a corrector 

part as *n c= +a a a  with 
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 ( ) ( )* 1 ext n int nt−  = ⋅ − a M f f d  and 1c T n−= − ⋅ ⋅a M G λ . (3.64) 

According to the central difference integration scheme 

 
( )

( )1 1
2

1
2n n n n

t
+ −= − +

∆
a d d d ,  

the displacement can be written as  

 1 *n c+ = +d d d , (3.65) 

with a predictor and a corrector displacement, respectively as 

 ( )2* * 12 n nt −= ∆ + −d a d d  and ( )2c ct= ∆d a . (3.66) 

If the impenetrability constraint is violated for the predictor displacement *d , the contact 

constraint matrix is constructed as ( )*=G G d  and the corrector can be solved by (3.63)2 

 ( )* 0c⋅ + ⋅ + =G d G d X , 

which combined with (3.66) and (3.64) yields the Lagrange multiplier 

 ( ) ( )12 1 *n Tt
−

− = ∆ ⋅ +
 

λ GM G G d X . (3.67) 

The velocity is then calculated using  

 ( ) ( )1 1 2n n n t+ −= − ∆v d d . (3.68) 

The procedure above essentially prevents a slave node from penetrating the master 

surface at time instant 1nt +  by applying a brake force vector nλ , i.e. the Lagrange 

multipliers, at nt .   

Written according to the framework of Newmark time integration, the procedure 

can be summarized in Box 4.  If no penetration is identified, the procedure is identical to 

the Newmark integration with  1 2α =  and 0β = . 
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1. Initialization: set increment count n=0 and initial state 0d , 0v and 0a  

2. Solve for load/time increment 1+n  
a. Form predictors  

2
* 1;   

2 2
n n n n n nt t

t+∆ ∆= + = + ∆ +v v a d d v a  

b. Solve for predictor acceleration 

( ) ( )* 1 1 1ext n int nt− + + = ⋅ − a M f f d  

c. Update velocity 

* * *

2

t∆= +v v a  

d. Construct the trial displacement for 2n +  by 
2

* 1 * *

2
n t

t+ ∆= + ∆ +d d v a  

If penetration is identified for the trial *d , solve for the Lagrange multipliers 
and the corrector 

( ) ( )121 1 *n Tt
−

+ − = ∆ ⋅ +
 

λ GM G G d X ; 

1 1c T n− += − ⋅ ⋅a M G λ  and ( )2c ct= ∆d a . 

Otherwise  
1n+ =λ 0 , c =a 0  and c =d 0  

e. Update the solution at 1n +  

1 *n c+ = +a a a  and 1 *

2
n ct+ ∆= +v v a  

3. Set 1+= nn  and go to 2. 

Box 4: Forward increment Lagrange multiplier method for contact computation  
using Newmark integration 

3.3.3 Simplifications 

The algorithm in Box 4 is a general explicit solution method for multi-body 

contact, where both bodies can deform and move.  Since the macroscale clothing 

modeling is currently formulated as a Signorini problem, where the interaction is 

unilateral, the algorithm can be simplified.  The wearer’s body surface is treated as a 
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master surface with its evolution prescribed and completely independent of the contact 

interaction.  The clothing surfaces are treated as slaves and they are driven by the 

evolution of the master. 

 

1. Initialization: set increment count n=0 and initial state 0d , 0v and 0a  

2. Solve for load/time increment 1+n  
f. Form predictors  

2
* 1;   

2 2
n n n n n nt t

t+∆ ∆= + = + ∆ +v v a d d v a  

g. Solve for predictor acceleration 

( ) ( )* 1 1 1ext n int nt− + + = ⋅ − a M f f d  

h. Update velocity 

* * *

2

t∆= +v v a  

i. Construct the trial displacement and position for 2n +  by 
2

* 1 * *

2
n t

t+ ∆= + ∆ +d d v a  and * *= +x d X  

If penetration is identified for the trial *x , construct correctors  

( )* *c proj= −d x x , ( )2c c t= ∆a d  and 1n c+ = − ⋅λ M a  

Otherwise  
1n+ =λ 0 , c =a 0  and c =d 0  

j. Update the solution at 1n +  

1 *n c+ = +a a a  and 1 *

2
n ct+ ∆= +v v a  

3. Set 1+= nn  and go to 2. 

Box 5: Simplification of forward increment Lagrange multiplier algorithm 

Following the algorithm in Box 4, a predictor state is constructed by integrating 

the projectiles of clothing nodes without considering the contact effect.  In the meantime, 

the master surface is independently updated based on the prescribed human motion 
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kinematics.  If the impenetrability constraint is violated, the predictor positions of the 

clothing nodes are corrected by projecting them onto the updated master surface.  Unlike 

the multi-body contact case, where Equation (3.63)2 needs to be solved, the corrector 

displacement can be directly obtained by projecting a penetrating slave node onto the 

master surface.  The projection direction may not be unique and a natural approach is to 

find the closest projection point.  For ellipsoidal surfaces, however, the gradient at the 

penetrating trial position is chosen as the projection direction, which does not yield the 

closest projection point but gives a fairly close approximation.  The simplified algorithm 

for unilateral clothing-wearer contact interaction can be summarized in Box 5: 

3.4 Contact computation for mesoscale yarn  

interaction study 

The objective of mesoscale yarn interaction studies is to understand the effects 

that such interactions have on the macroscopic mechanical response properties of woven 

fabrics.  The details of the study are presented in the next chapter, but here the discussion 

is focused on an implicit contact algorithm for the study.  Due to its ready 

accommodation of frictional contact constraints by using return mapping algorithm, a 

penalty formulation is chosen.   

There are two major difficulties in solving contact problems with a penalty 

formulation.  One is the choice of proper penalty parameters, which should effectively 

enforce the contact constraints while not significantly impacting the convergence of the 

solution algorithm.  The other difficulty is the asymmetry of the tangent operator 

resulting from consistent linearization of the friction law.  To address these two issues, 

Laursen and Simo [40,41] proposed an augmented Lagrangian method, which allows 

small penalty parameters while still enforcing the contact constraints to a high precision 

through an iterative augmentation procedure.  Symmetrical tangent operators are also 

made possible within this method by fixing the normal traction when integrating the 
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friction law.  Their method is adopted for the yarn interaction study and a brief summary 

is provided as below.   

The mesh-to-mesh collision detection technique outlined in Section 3.2 is adopted 

for the yarn contact computations since yarns in this study are modeled with hexahedral 

trilinear finite elements.  The spatial locality assumption is applied as the contact surfaces 

of yarns are usually not distorted excessively under ordinary loading conditions in woven 

fabrics.  A global nearest neighbor search is conducted only once at the beginning of the 

analysis and subsequent searching is confined to the neighborhoods of the current closest 

nodes.  The improvements discussed in Section 3.2.2 are implemented for master 

segment searching to reduce the possibility of a slave node trapped on the intersections of 

multiple master segments. 

3.4.1 Augmented Lagrangian regularization 

In the augmented Lagrangian method, Lagrange multipliers are introduced in 

addition to the penalty terms.  The constraints are written as follows.   

Impenetrability constraint: 

 : λ ε= +N N Nt g .  (3.69) 

Friction constraints: 
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Φ = − ≤


− = − 


≥


Φ = 

ɺ ɺɺ
. (3.70) 

Above, λN  and 
α

λT  denote the Lagrange multipliers for normal and tangential contact 

traction components, respectively.  For clarity, the component form of the friction contact 

is given.  The only difference between (3.70) and (3.50) is that the frictional traction is 

expressed in terms of the convected basis in the reference configuration as  
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 α=
a

b
T Tt TT , (3.71) 

which is a pull-back of the spatial quantity (3.45).  With the definition (3.71), the norm 

can be written in terms of the material metric  

 αβ α β= ⋅M T T  (3.72) 

instead of its spatial counterpart, which introduces further complication for the 

symmetrization of the tangential operators. 

3.4.2 Solution algorithm 

3.4.2.1 Global solution algorithm 

The global problem is to find tφ , Nλ  and Tα
λ such that 

 ( ) ( )
(1)

(1), 0t N TW t g t d
α

αδ δ δ δξ
Γ

+ + Γ =∫φ φ , (3.73) 

where Nt  and Tt α
 are given by (3.69) and (3.70), respectively.  Equation (3.73) is solved 

by the following nested iterative procedure.  First the configuration tφ  is solved by 

holding the values of the Lagrange multipliers Nλ  and Tα
λ  fixed.  Then the Lagrange 

multipliers are updated by the penalty terms associated with the tφ .  The procedure is 

repeated until the contact constraints are enforced with expected precision.  The whole 

solution algorithm consists of two iterative loops, where in the outer loop the Lagrange 

multipliers are updated iteratively while in the inner loop the configuration/deformation 

is solved with fixed estimate of the Lagrange multipliers.  Assuming that the solution of 

the global problem at time step n has been determined, the algorithm to find the solution 

for the next step n+1 is summarized in Box 6. 

3.4.2.2 Return mapping algorithm 

Equation (3.77) in Box 6 is obtained by applying backward Euler time integration 

scheme to the rate-form constraints (3.69) and (3.70).  It is very similar to backward 

Euler integration algorithms of constitutive relationships in elasto-plasticity.  The 
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procedure is displacement driven in that given an incremental displacement and the 

current estimate of the Lagrange multipliers, 
1

( )

n

k
Nλ

+
 and 

1

( )

n

k
T α

λ
+

, the contact tractions, 
1

( )

n

k
Nt +

 

and 
1

( )

n

k
Tt α+

,  are solved.  Equation (3.77) can be solved by a return mapping algorithm as 

follows:  

Trial state:  
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 (3.74) 

Return mapping: 
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 (3.75) 

3.4.2.3 Symmetrization 

The tangent operator associated with frictional contact is derived by linearizing 

the frictional virtual work as  

 ( )
(1) (1) (1)

(1) (1) (1)
T T Tt d t d t d

α α α

α α αδξ δξ δξ
Γ Γ Γ

 
∆ Γ = ∆ Γ + ∆ Γ  
 
∫ ∫ ∫ , (3.76) 

where Tt α
∆  is obtained by linearizing the return mapping algorithm (3.75).  Since the slip 

frictional traction 
1

( )

n

k
Tt α+

depends on ( )
1

k
ng +  through 

1

( )

n

k
Nt +

, linearization of 
1

( )

n

k
Tt α+

 generates a 

term related to g∆ , which when combined with αδξ  yields an unsymmetrical tangent 

operator.   

It is observed that if the normal traction 
1

( )

n

k
Nt +

 is fixed in the solution phase, i.e. 

Step 2. in Box 6, the asymmetry can be removed.  A symmetrical augmented Lagrangian 

algorithm was designed by Laursen [41].  And the procedure is briefly summarized in 
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Box 7.  In Step 2, the stick/slip condition ( )
1

k
n+Φɶ  is defined in terms of the current estimate 

of the Lagrange multiplier of the normal traction 
1

( )

n

k
Nλ

+
, which is fixed throughout the 

solution phase and thus yields symmetrical tangential operators.  And then in Step 3 an 

additional return map is applied to enforce the frictional contact constraints with the 

updated normal traction 
1

( 1)

n

k
Nλ

+

+ . 

 
1. Initialize the Lagrange multipliers and the augmentation count k 

1 1

(0) (0),
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= =  and 0k = . 

2. Solve for nodal displacement ( )
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n+d  such that  
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                 (3.77) 

3. Update the Lagrange multipliers and the augmentation count k 

1 1 1 1

( 1) ( ) ( 1) ( ),
n n n n

k k k k
N N T Tt t

α α
λ λ

+ + + +

+ += =  and 1k k= + . 

4. Return to Step 2. until the solution (displacement and multipliers) converges. 

Box 6: Solution algorithm of the augmented Lagrangian method 
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1. Initialize the Lagrange multipliers and the augmentation count k 
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2. Solve for nodal displacement ( )
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k
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3. Update the Lagrange multipliers and the augmentation count k 
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4. Set 1k k= +  and return to Step 2. until the solution (displacement and multipliers) 
converges. 

Box 7: Symmetrical augmented Lagrangian algorithm by Laursen [41] 
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CHAPTER 4 

MECHANICAL PROPERTIES OF WOVEN FABRICS AND  

MESOSCALE FABRIC MODELING 

Woven fabrics exhibit complex material behaviors that typically feature 

nonlinearity, anisotropy and hysteresis.  In addition, the response behaviors of woven 

fabrics are sensitive to changes in load conditions and deformation.  For example, the 

biaxial extension property of a fabric differs significantly from that of biaxial 

compression or uniaxial extension.  Consequently, it is a challenge to formulate 

constitutive models for fabrics that successfully represent all these complex behaviors 

and automatically adapt to various load conditions.   

Woven fabrics are constructed by weaving yarns in certain regular patterns.  The 

yarns themselves are typically loose bundles of individual fibers that are more or less 

aligned.  The material properties of fabrics are largely determined by the properties of 

individual yarns, the topology of the yarn structure, and the interactions between the 

interwoven yarns.  Previous efforts have been made and reported in the literature to relate 

yarn topology, properties, and interactions to the overall fabric properties.  Most such 

models adopt simplified geometric descriptions and yarn interaction assumptions, and the 

generality of these models is thus limited.   

In this chapter, a general three-dimensional textile mechanics model equipped 

with multi-body frictional contact computations is constructed.  The length scales of the 

models generally correspond to the dimensions of the unit cells associated with the 

relevant weave patterns.  Since this length scale is typically much larger than the 

diameters of the fibers that comprise the yarns, but much smaller than length scale on 

which human-clothing interactions are modeled, it is hereafter called the mesoscale.  The 

relationship between the mesoscale textile mechanics model and the macroscopic fabrics 

properties is investigated by following computational homogenization theory and unit 
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cell analysis techniques.  The organization of this chapter is as follows:  First, the 

mechanical properties of woven fabrics are briefly introduced and some preceding fabric 

constitutive models are reviewed.  Then the computational homogenization approach and 

the unit cell problem are presented.  Finally, multiscale modeling approaches to 

incorporate realistic fabric properties into the macroscale fabric model framework are 

discussed. 

4.1 Constitutive models of woven fabrics 

4.1.1 Mechanical properties of woven fabrics 

In general, woven fabrics are constructed by weaving together yarns along two 

orthogonal directions, i.e. warp and weft, following certain periodic weave patterns.  The 

mechanical properties of fabrics are mostly determined by the properties of constituent 

yarns, the configuration of the yarn structures and the interactions between interwoven 

yarns.   

Fabrics exhibit highly nonlinear and anisotropic behaviors.  A typical load-stretch 

curve of a biaxial extension test of fabrics is shown in Fig.15a, which can be obtained by 

Kawabata Evaluation System for Fabrics (KES-F) [16].  The initial part of the curve is 

relatively compliant and it corresponds to the yarn decrimping, i.e. the curvatures of 

yarns decreasing as the yarns are being straightened by the tension.  Then the fabric 

shows much stiffer responses in which the yarns are actually stretched.  In addition, since 

the yarn densities along the warp and the weft direction generally differ, the tensile 

behaviors along the two directions are generally different and exhibit anisotropy.   

In addition to nonlinearity, woven fabrics also exhibit hysteresis.  A load-

deformation curve of a fabric bending test is sketched in Fig.15c, from which one may 

notice that energy is dissipated when the fabric is subjected to a loading and unloading 

loop.  Similar behavior can also be observed in the in-plane shear test as shown in 

Fig.15b.  The dissipative behavior of woven fabrics is due to the frictions between and 
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within yarns.  From Fig.15b, one may also notice that the fabric stiffens as the shear 

angle increases.  This is due to a phenomenon called locking, where yarns jam against 

each other and further loading induces deformation of yarns’ cross sections.  

According to the brief introduction given above, we know that factors on the 

mesoscale such as decrimping, locking and friction, significantly affect macroscale fabric 

behaviors.  Ideally, a realistic fabric constitutive relationship should include all these 

factors and a complete mesoscale yarn structure model is the key in predicting the 

complex fabric behaviors.  In the following sections, some of these models are reviewed.  

Most of them are confined to the prediction of elastic behaviors and the plain weave 

pattern is considered for simplicity. 

 

Figure 15: Typical fabric behaviors 
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4.1.2 Simplified mesoscale fabric models 

4.1.2.1 Spatial structure models 

In 1973, Kawabata et al [46-48] constructed a three-dimensional structural model 

to predict the mechanical properties of plain-weave fabrics made of various types of 

yarns.  In their model, the mechanical properties of constituent yarns and the geometrical 

parameters characterizing the weave structures are taken as input and the fabric in-plane 

deformation behaviors, such as the biaxial extension, the uniaxial extension and the in-

plane shear, are computed.  Good agreement between their predictions and experiment 

data were achieved. 

A unit structure as shown in Fig.16b was chosen to approximate the actual yarn 

structure at the crossing point (Fig.16a).  The curvature and the cross section of yarns 

were neglected and yarns were modeled as straight segments joined at the cross points.  A 

coordinate system was set at a cross point of two yarns with axes 1X  and 2X  align with 

the yarn directions and axis 3X  perpendicular to the plane 21XOX .  The initial 

configuration of the structure was described by the following parameters: 

� iy0  initial yarn spacing, 

� il0  initial yarn length, 

� i0θ  the angle between yarn i and 3X  axis at initial configuration, 

� mih  crimp height, i.e. the amplitude of the wave of yarn i at initial 

configuration, 

where 2,1=i  indicating the warp and the weft direction respectively.  These parameters 

can be determined by yarn densities and crimp ratios, two sets of parameters measured 

from fabric specimens.  

Suppose a fabric specimen is loaded by biaxial extension with stretch ratios of 1λ  

and 2λ  along 1X  and 2X  directions, respectively.  Due to decrimping, the yarns deflect 
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by 1h  and 2h  at the crossing point, as shown in Fig.17.  From the deformed 

configuration, one can compute the stretch ratios of yarns as follows:   
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The angles between yarns and 3X  axis change due to the decrimping as well and the new 

angles can be evaluated as follows 
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Figure 16: Kawabata’s yarn structure model 
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Figure 17: The deformed configuration of Kawabata’s yarn structure model 

For biaxial extension, Kawataba et al. neglected the bending in the yarns and 

assumed that the yarns are subjected to axial tension, which were generally written as a 

function of yarn stretch ratio as 

 ( )yiiTi gF λ= . (4.3) 

With this assumption, the force equilibrium at the cross point yields two equations 

 ( ) ( ) 222111 cos2cos2 θλθλ yyc ggF == , (4.4) 

where cF is the compression force between the yarns due to contact.  Since this force is 

related to the deformation of yarn under lateral compression, another yarn property 

function was introduced, which reads as 

 ( )ciDi Fφδ = , (4.5) 

where Diδ  denotes the decrease in the thickness of yarn i under the application of cF .  

Then the total change of the crimp height of two contacting yarns are thus evaluated as  
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 ( ) ( ) ( ){ }ccc FFF 212

1 φφ +=Φ , (4.6) 

which relates to the yarn deflection as 

 ( )cFhh Φ−= 12 . (4.7) 

Experiments were proposed and conducted by Kawabata et al. to determine the yarn axial 

extension and lateral compression behaviors, namely the functions given in (4.3) and 

(4.5). 

For a given biaxial load case ( )21,λλ , Equation (4.4) and (4.7) can be solved 

simultaneously for 1h , 2h  and cF , with which the yarn tensile forces along 1X  and 2X  

axes can be obtained by taking the projections as 

 iTii FF θsin= , (4.8) 

and the forces per unit length of fabric are thus given by 

 iii Fnf = , (4.9) 

where in  is the number of i-yarns per unit length in the fabric.  In their paper, Kawabata 

et al. proposed a graphical method to solve the equations and good agreements between 

the model prediction and experiment results were obtained for plain-weave fabrics made 

of different yarns and various weave structures. 

For uniaxial extension, some modifications were made to capture the initial 

decrimping response of fabrics.  The bending and the transverse shear deformation of the 

yarns in the free direction were included.  Yarns were still assumed to remain straight, i.e. 

an infinite large bending rigidity associated with the yarns and the bending was measured 

by the change of the angle iθ .  The transverse shear was related to the friction between 

fibers and the hysteresis was thus included. 

In order to model the in-plane shear behavior, the torque required to change the 

shear angle was considered and it was approximated as a linear function with its 
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coefficient experimentally determined.  Frictional terms were included in the torque 

definition, which enables the model to predict the hysteresis response of fabrics.  The 

combined biaxial and shear loading was modeled and resultant forces were computed 

from equilibrium conditions. 

In their papers, Kawabata et al. treated different load cases separately and 

different formulations and solution methods were adopted for each.  To be used as a 

constitutive relationship, Kawabata’s model needs to be generalized to include all 

possible different loadings.  One possible solution is to model the yarn structure as a 

spatial truss system with tension members modeling yarn stretching and compression 

members modeling lateral yarn compression.  To include the yarn bending and the 

resistance to in-plane shear deformation, bending and tensional springs can be added to 

the system.  When certain fabric strain is applied, based on the equilibrium of the system 

the resultant forces can be computed, from which the fabric stress can be evaluated. 

An example of such an extension based on Kawabata’s model was given by King 

et al. [50], who used the same unit cell as proposed by Kawabata et al. (Fig.16b) was 

used.  In addition to yarn stretch, bending, lateral compression and the friction between 

yarns, which had been considered in Kawabata’s model, locking was captured by using 

locking trusses.  Due to the relative complexity of their structural model, the equilibrium 

configurations were found by minimizing the total strain energy in the system. 

4.1.2.2 Interacting elastica models  

Instead of using simplified spatial truss model like Kawabata’s model, De Jong 

and Postle [51-54] proposed a continuous model based on energy analysis and optimal 

control theory.  The strain energy of an interwoven yarn structure was first formulated 

including the bending, torsion, lateral compression and axial extension of individual 

yarns, and then the configuration and the internal forces and moments of the structure 
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were obtained by minimizing the strain energy.  In their model, a single yarn is treated as 

an elastica.  The strain energy associated with yarn bending was defined as 

 ( )1 2

002b

B
ds

L
ψ κ κ= −∫ , (4.10) 

where κ is the curvature of the yarn; L and B denote the bending rigidity and the length 

of the yarn, respectively; and an initial curvature 0κ  is considered.  The tensile strain 

energy is formulated as  

 ( )1 2

0
1

2t

EL
dsψ λ= −∫ , (4.11) 

where E denotes the Young’s modulus of the yarn and λ  is the stretch ratio.  The yarn 

interaction is considered by a compression strain energy as follows 

 0

a

c

d
C

d
ψ  =  

 
, (4.12) 

where C is the yarn transverse compression rigidity, a the yarn compression index, and 

0d  an arbitrary constant with the dimensions of length.  The variable d is the 

perpendicular distance between two yarns.  The equilibrium state of the interacting 

elastica structure is determined by minimizing the total strain energy in the system. 

A similar energy-based model was introduced by Taban and Luo in [55].  In their 

model, yarns were assumed to be in sinusoidal shape and the constitutive equations were 

derived from the strain energy of the yarns, which included axial deformation and 

flattening of yarns.  Fabric properties under uniaxial extension were predicted and good 

correlation between the predictions and experiments were found. 

4.1.2.3 Discussions 

The models reviewed above are representative analytical efforts to predict the 

mechanical properties of fabrics based on the underlying mesoscale yarn structure.  They 
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demonstrate the correlation between the fabric behaviors and the mesoscale yarn 

structures and indicate the effectiveness of the micromechanical material modeling 

technique for woven fabrics.  Nevertheless, these models lack generality due to their 

over-simplified representations of yarn geometries and their treatment of yarn 

interactions.  In most of the models, a yarn is represented as either a straight line segment 

or a curve along the centerline and the yarn interaction is defined simply by a spring 

component.  It is difficult to relate such models to real yarn structures and to identify 

appropriate model parameters. 

In the following, a more sophisticated mesoscale yarn structure is developed, 

where realistic three-dimensional yarn geometries are considered and the yarn 

interactions are treated using general multi-body frictional contact computations.  And 

the relationship between the mesoscale yarn interactions and the macroscale fabric 

behaviors is studied and presented by utilizing computational homogenization and unit 

cell analysis techniques. 

4.2 Computational homogenization  

Computational homogenization theory based on two-scale asymptotic expansion 

is introduced in this section.  Since only two scales are considered in the discussion of the 

two-scale expansion, the terminology macroscale and microscale will be adopted.  

However, it should be advised that when applied to study fabrics mechanics the two 

scales actually correspond to the macroscale fabrics and the mesoscale yarn structures, 

respectively. 

4.2.1 Two-scale expansion of a one-dimension linear 

elasticity problem 

Consider a one-dimensional linear elasticity problem in a heterogeneous medium.  

Assume that the heterogeneity is periodic and is observed on a small length scale 

characterized by parameter λ .  The governing equation is 
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( )

 ( ) ( ) 0
d du x

E x x
dx dx

λ
λ λγ 

+ = 
 

, (4.13) 

where Eλ  and λγ denote the Young’s modulus and the body force, respectively.  The 

periodicity of the material heterogeneity admits 

 ( ) ( )E x E x nXλ λ= +  and ( ) ( )x x nXλ λγ γ= + , (4.14) 

where n is an arbitrary integer and X denotes the period.  Due to the discrepancy between 

the length scales of the medium and the material heterogeneity, a microscale measure is 

usually introduced, which is defined as 

 y x λ= . (4.15) 

All quantities can thus be described in terms of two spatial length scales, the macroscale 

characterized by x and the microscale characterized by y.  Since the material properties 

are macroscopically uniform and vary only on the microscale, one has 

 ( ) ( , ) ( )E x E x y E yλ λ= =  and ( ) ( , ) ( )x x y yλ λγ γ γ= = , (4.16) 

where both ( )E y  and ( )yγ  are Y- periodic, i.e. 

 ( ) ( )E y E y nY= +  and ( ) ( )y y nYγ γ= +  (4.17) 

with Y X λ= .   

According to two-scale asymptotic expansion, the displacement field can be 

written as follows 

 0 1( ) ( , ) ( , )u x u x y u x yλ λ= + , (4.18) 

where 0( , )u x y  gives the macroscopic displacement field while 1( , )u x y  describes the 

oscillatory displacement on the microscale.  Both 0( , )u x y  and 1( , )u x y  are Y- periodic.  

Substituting Equation (4.18) into (4.13) and collecting the terms of the same scale, i.e. the 

power of λ , governing equations associated with different length scales are obtained.  

For 2λ− , one has  

 
0( , )

( ) 0
u x y

E y
y y

 ∂ ∂ = ∂ ∂ 
,  (4.19) 
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which indicates that  

 0 0( , ) ( )u x y u x= . (4.20) 

For the terms associated with 1λ− , one has 

 
0 1( , ) ( , )

( ) 0
u x y u x y

E y
y x y

  ∂ ∂ ∂+ =  ∂ ∂ ∂  
. (4.21) 

By introducing the total microscale strain ( , )x yε  and stress ( , )x yσ , a microscale 

problem is revealed, which is governed by the following equations 

 
0 1

( , )
0

( , ) ( ) ( , )

( , ) ( , )
( , )

x y

y

x y E y x y

u x y u x y
x y

x y

σ

σ ε

ε

∂ = ∂ = 
∂ ∂ = +

∂ ∂ 

 (4.22) 

The terms associated with 0λ  yield 

 
0 1 1( , ) ( , ) ( , )

( ) ( ) ( ) 0
u x y u x y u x y

E y E y y
x x y y x

γ
    ∂ ∂ ∂ ∂ ∂+ + + =    ∂ ∂ ∂ ∂ ∂    

. (4.23) 

Integrating both sides over the period Y, the second term in Equation (4.23) vanishes due 

to the Y-periodicity of both ( )E y  and 1( , )u x y , and the governing equations for the 

macroscale problem are obtained: 

 

( )
0

1
( ) ( , )

1
( )

Y

Y

d x

dx

x x y dy
Y

y dy
Y

γ

σ

γ γ

Σ + = 

Σ = 



= 


∫

∫

ɶ

ɶ

, (4.24) 

where ( )xΣ  is the macroscale stress, which is determined by the volume average of the 

total microscale stress field given by (4.22)2.  A macroscale strain is usually defined in a 

similar way by the volume average of total microscale strain, 
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1

( ) ( , )
Y

x x y dy
Y

εΕ = ∫ . (4.25) 

As 1( , )u x y  is Y-periodic, it can be verified that  

 
0 0

( )
u du

x
x dx

∂Ε = =
∂

, (4.26) 

where the second equation is deduced from Equation (4.20). 

With the two-scale expansion, the original problem in the heterogeneous medium 

given in (4.13) is decomposed into two separate problems: Equation (4.24) for the 

macroscale and Equation (4.22) for the microscale.  On the macroscale, homogenized 

quantities independent of the microscale measure y are employed and the material 

heterogeneity thus becomes invisible.  The relation between the macroscale stress ( )xΣ  

and strain ( )xΕ  is not explicitly given in (4.24).  Instead, it is determined by the 

microscale problem (4.22), in which for a given macroscale strain ( )xΕ , the microscopic 

displacement field 1( , )u x y  is solved and the total microscale stress field ( , )x yσ is then 

integrated yielding the macroscopic stress response ( )xΣ . 

Combining (4.20) with (4.21), one has  

 
1 0( , ) ( )

( )
u x y dE y du

E y
y y dy dx

 ∂ ∂ = − ∂ ∂ 
, (4.27) 

which implies the following decomposition for the microscale displacement 

 
0

1 ( )
( , ) ( ) ( )

du x
u x y y x

dx
χ ξ= +  (4.28) 

where ( )yχ  is called the characteristic displacement.  According to (4.27), the 

characteristic displacement can be determined independent of 0du dx  by solving 

 
( )

( ) 1 0
d d y

E y
dy dy

χ  
+ =  

  
. (4.29) 

Once ( )yχ  is determined, according to (4.22)2 and (4.22)3, the total microscale stress is 

given by 
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0( ) ( )

( , ) ( ) 1
d y du x

x y E y
dy dx

χσ  
= + 

 
. (4.30) 

The volume average of Equation (4.30) yields the following homogenized macroscopic 

constitutive relation 

 ( ) ( )x E xΣ = ⋅Εɶ , (4.31) 

with the homogenized Young’s modulus 

 
1 ( )

( ) 1
Y

d y
E E y dy

Y dy

χ 
= + 

 
∫ɶ . (4.32) 

4.2.2 General two-scale expansion  

The two-scale expansion can be readily extended to general three-dimensional 

elasticity problems.  The equilibrium of a heterogeneous medium residing in a domain 

nsdλΩ ⊂ ℝ  is governed by the following equations: 

 

div  in 

 on 

 on 

t

u

λ λ λ

λ

λ

ρ + = Ω


⋅ = Γ 
= Γ 

σ b 0

σ n t

u u

, (4.33) 

where tΓ  and uΓ  denote the natural and essential boundaries, respectively.  The 

superscript λ  again indicates the representative dimension of the heterogeneities.  

Assume that the constitutive law of the heterogeneous medium is elastic, one has 

 
s

W λ
λ

λ

λ λ

∂=
∂

= ∇

σ
ε

ε u

, (4.34) 

where ( ),W λ λx ε  is the stored energy and ( ) 2
Ts λ λ λ ∇ = ∇ + ∇  

u u u  is the infinitesimal 

strain. 

By introducing a microscale measure λ=y x , the displacement field can be 

written as a two-scale expansion 0 1( ) ( ) ( , )λ λ= +u x u x u x y .  The problem can then be 

decomposed into separate problems on two length scales.  On the microscale, the 
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problem is to determine the field variables { }1( , ), ( , ), ( , )u x y ε x y σ x y  in a unit cell Y  such 

that 

 
( )

0 1

div  in 

,
( , )

( , ) s s

W

= 
∂ = ∂ 

= ∇ + ∇ 

y

x y

σ 0

x ε
σ x y

ε

ε x y u u

Y

. (4.35) 

On the macroscale, a homogenized version of the original problem (4.33) is constructed.  

The macroscopic field variables are { }0( ), ( ), ( )u x Ε x Σ x  and the governing equations are 

as follows 

 div  in 

1
( ) ( , )

1
( ) ( , )

dV

dV

ρ

ρ ρ

+ = Ω 

= 


=


∫

∫

x Σ b 0

Σ x σ x y

x x y

ɶ

ɶ

Y

Y

Y

Y

, (4.36) 

where Y� denotes the volume of the unit cell.  A macroscale strain can be defined as the 

volume average of the microscale strain field, i.e. 

 
1

( ) ( , )dV= ∫Ε x ε x y
YY

. (4.37) 

It can be verified that since 1( , )u x y  is Y-periodic the volume average of 1∇yu  vanishes 

and  

 0( ) s= ∇xΕ x u . (4.38) 

The microscale problem (4.35) can be treated as the homogenized constitutive law 

for the macroscale problem (4.36).  Given a macroscopic strain ( )Ε x , the microscopic 

displacement 1( , )u x y  and stress ( , )σ x y  are determined by solving (4.35).  The volume 

average of ( , )σ x y , i.e. the macroscopic stress ( )Σ x , is then returned to the macroscale 

problem, yielding the stress response to the applied strain ( )Ε x . 
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For linear elasticity, a Y-periodic linear elasticity tensor ( )c y  exists and the 

microscale constitutive relation given in Equation (4.35)2 can be written as  

 ( , ) ( ) : ( , )=σ x y c y ε x y . (4.39) 

And the microscale problem is thus to find Y-periodic displacement field 1( , )u x y  such 

that  

 
0 1( ) ( , )

( ) 0k k
ijkl

j l l

u u
c

y x y

  ∂ ∂∂ + =  ∂ ∂ ∂  

x x y
y , (4.40) 

or 

 
1 0( )( , ) ( )

( ) ijklk k
ijkl

j l j l

cu u
c

y y y x

∂ ∂ ∂∂ = − ∂ ∂ ∂ ∂ 

yx y x
y . (4.41) 

Equation (4.41) implies that 1( , )u x y  can be decoupled as follows 

 
0

1 ( )
( , ) ( ) ( )ppq

k k k
q

u
u

x
χ ξ

∂
= +

∂
x

x y y x , (4.42) 

where ( )pq
kχ y  is the characteristic displacement associated with the macroscopic strain 

component 0 ( )p qu x∂ ∂x  and it is determined by solving  

 
( )( )

( )
pq

ijpqk
ijkl

j l j

c
c

y y y

χ ∂ ∂∂ = − ∂ ∂ ∂ 

yy
y . (4.43) 

The homogenized constitutive law, i.e. the volume average of Equation (4.39), reads 

 ij ijpq pqcΣ = Εɶ , (4.44) 

where  

 

0

( )1
( )

1
( , )

( )1
( , )

pq
k

ijpq ijkl kp lq
l

ij ij

p
pq pq

q

c c dV
y

dV

u
dV

x

χδ δ

σ

ε

 ∂= + ∂ 

Σ =

∂
Ε = =

∂

∫

∫

∫

y
y

x y

x
x y

ɶ
Y

Y

Y

Y

Y

Y

 (4.45) 
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For the volume average of the microscopic strain Ε  to be equal to the imposed 

macroscopic strain 0s∇xu , i.e. 

 ( )0 1 01 1
( , ) s s sdV dV= = ∇ + ∇ = ∇∫ ∫ x y xΕ ε x y u u u

Y YY Y
 

the volume integral of the gradient of the microscopic displacement has to vanish, i.e. 

 1 0s dV∇ =∫ yu
Y

. (4.46) 

The condition (4.46) is satisfied if 1( , )u x y  is Y- periodic.  However, if the periodic 

boundary condition is not enforced on a unit cell or if there are interior boundaries within 

a unit cell, (4.46) may not be satisfied.  Consider a unit cell with an exterior boundary 

0∂Y  and an interior boundary 1∂Y  and assume that periodic condition is enforced on 

0∂Y .  According to the divergence theorem, the volume integral of the gradient of the 

microscopic displacement can be written as follows 

 
0 1

1
1 1 1i

i j i j
j

u
dV dV u n dS u n dS

y ∂ ∂

∂∇ = = +
∂∫ ∫ ∫ ∫yu

Y Y Y Y

, (4.47) 

where the first term on the right hand side vanishes due to the periodic boundary 

condition on 0∂Y  while the integral on 1∂Y  is generally nonzero.  The volume average of 

the microscopic strain is thus equal to the summation of the prescribed macroscopic 

strain 0s∇xu  and the contribution of the microscopic displacement along the interior 

boundary, i.e. 

 ( )1

0 1 11 1 1
( , )

2
s

i j i jdV u n n u dS
∂

= ∇ + +∫ ∫xε x y u
Y YY Y

. (4.48) 
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4.3 Unit cell analysis of mesoscale yarn structures 

4.3.1 Computational homogenization with  

finite deformation 

The computational homogenization approach presented in the previous section is 

based on infinitesimal strain, which is not applicable for problems with finite deformation 

and/or rotation.  The yarn interaction problem in textiles involves nonlinearities in both 

kinematic relationships and material properties and thus it is important to include finite 

deformation in the formulation of the problem.  For this purpose, the computational 

homogenization approach is extended here to include the finite deformation effect. 

Consider a medium with periodic heterogeneities of a fine representative size λ .  

The reference configuration of the heterogamous medium is denoted by λΩ  and a 

material point is given by λ λ∈ΩX .  A deformation is a one-to-one mapping ( )λ λϕ Ω  

and a spatial point is a result of the mapping ( )λ λ λϕ=x X .  By introducing a microscale 

λ=Y X , the heterogeneous domain λΩ  can be decomposed as Ω×Y , where Ω  is a 

homogenized domain on the original length scale, i.e. macroscale, and Y  represents the 

microscale, where the heterogeneities are observed.  Y  is usually called a unit cell and it 

corresponds to a material point in Ω .  The two-scale expansion of the reference and 

deformed configuration can be written, respectively, as 

 ( ) ( ) ( )
,

, .

λ

λ λ

λ
λ

= +

= +

X X Y

x X x X y X Y
 (4.49) 

The displacement involves both a macro- and a micro- part: 

 ( ) ( ) ( )0 1 ,λ λ λ= +u X u X u X Y , (4.50) 

where ( ) ( )0 = −u X x X X  and ( ) ( ) ( )1 , ,= −u X Y y X Y Y X .  Assume that the 

macroscopic deformation gradient is  
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 ( ) ( )∂
=

∂
x X

Φ X
X

, (4.51) 

the microscopic deformed configuration can be written as  

 ( ) ( ) ( )*, ,= ⋅ +y X Y Φ X Y u X Y , (4.52) 

where ( )* ,u X Y  is a oscillatory displacement field due to the heterogeneity within the 

unit cell Y .  The total microscopic displacement is  

 ( ) ( ) ( )1 *, ,= − ⋅ +  u X Y Φ X 1 Y u X Y . (4.53) 

And the microscopic deformation gradient in Y  reads 

 ( ) ( )* ,= +F Φ X F X Y , (4.54) 

where 

 ( ) ( )*
* ,

,
∂

=
∂

u X Y
F X Y

Y
 (4.55) 

Since *u  is Y- periodic, the volume integral of *F over Y  vanishes and the volume 

average of the total deformation given in Equation (4.54) is equal to the macroscopic one, 

i.e. 

 
1

dV =∫ F Φ
YY

. (4.56) 

However, if periodic boundary conditions are not prescribed on the exterior boundaries or 

there exist interior boundaries, Equation (4.56) does not hold. 

On the microscale, a periodic boundary value problem is solved and the 

governing equations are summarized below 

 
( )

( ) ( )*

DIV 0 in 

,

,

W

= 
∂ = ∂ 
= + 

P

Y F
P

F
F Φ X F X Y

Y

, (4.57) 

where P is the first Piola-Kirchhoff stress and hyperelasticity is assumed for the 

constitutive law of the yarns.  Equation (4.57) implicitly defines the homogenized 
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macroscopic constitutive relationship.  The computation procedure is similar to that of 

the infinitesimal strain case.  Given a macroscopic strain Φ , Equation (4.57) is solved for 

the microscopic displacement ( )* ,u X Y , from which the deformation *F  and the stress P 

are calculated.  And the volume average of the stress in the unit cell gives the 

macroscopic stress in response to Φ .  As a symmetrical stress measure is usually 

preferred, the averaged second Piola-Kirchhoff stress tensor is adopted 

 ( ) 11
dV−= ⋅∫S X F P

YY
. (4.58) 

The conjugate strain measure, as proved in [62], is the macroscopic Green-Lagrangian 

strain, which is defined by 

 ( ) ( )1

2
T= −E X Φ Φ 1 . (4.59) 

4.3.2 Finite element implementation of the unit cell 

problem 

Given a macroscopic deformation gradientΦ , the weak form statement of (4.57) 

is to find ( )*u Y  such that for any Y-periodic variation *δu  

 *DIV 0dVδ⋅ =∫ P u
Y

 (4.60) 

where  

 
( ) *,

 and 
W∂ ∂= = +

∂ ∂
Y F u

P F Φ
F Y

. 

Applying the divergence theorem, (4.60) is rewritten as 

 ( )*: 0dVδ∇ =∫ P u
Y

  or  
*

0i
iI

I

u
P dV

Y

δ∂ =
∂∫Y , (4.61) 

where the boundary integral terms vanish due to the periodicity and/or traction-free 

boundary conditions.  Applying a finite element discretization, the displacement and its 

variation can be expressed as  
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 *
i A Aiu N d=  and *

i A Aiu N dδ δ= ,  (4.62) 

where AN  and Ad  denote nodal shape functions and displacement, respectively.  Since 

Equation (4.60) must hold for all admissible values of *δu , it leads to a set of discrete 

nodal force balance equations  

 ( ) 0T dV⋅ =∫ B P d
Y

, (4.63) 

where B are nodal strain displacement matrices with their components given by 

AI A IB N Y= ∂ ∂ .  From Equation (4.63) the nodal displacement can be determined.  The 

periodicity of *u  is enforced by requiring the displacements of corresponding nodes on 

opposite faces of the unit cell to be the same and this can be achieved by a nodal 

enslavement procedure.  In the unit cell analysis given in Equation (4.63), loading occurs 

through a prescribed macroscopic deformation Φ  and it is applied by a predictor 

displacement field ( ) [ ]= − ⋅d Y Φ 1 Yɶ in the finite element computations. 

4.3.3 Unit cell analysis of mesoscale yarn structures 

Computational homogenization provides a systematic framework to study the 

material properties of heterogeneous media.  It relates the macroscopic behaviors of a 

medium to its microscale heterogeneities and microscale phenomena.  In this section, the 

computational homogenization approach just described is applied to investigate the 

macroscale stress-strain characteristics of woven fabrics due to the mesoscale yarn 

interactions.  A unit cell is constructed to capture a representative yarn structure and it is 

loaded by prescribed macroscopic strains.  The local deformation and stress in the unit 

cell are determined by solving the unit cell analysis problem.  The relationship between 

the prescribed deformation and the volume average of the stress over the unit cell is 

interpreted as the macroscopic constitutive relationship of the woven fabric. 

Various weave patterns exist and the basic ones are the plain, twill and satin 

weaves (Fig.18).  Plain weave is the simplest pattern, where the weave is simply over-one 

and under-one for each yarn, and a cross is formed at the intersection of a warp yarn and 
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a weft yarn.  Twill weave has an over-two and under-two pattern.  Satin weave uses as 

few interlaces as possible and usually forms a loose structure.  The fabric properties vary 

significantly for different weave patterns.  For simplicity, the plain weave is considered 

in this study to illustrate the homogenization approach.  However, the method presented 

here can be readily applied to other patterns by choosing appropriate unit cells. 

 

Figure 18: Basic weave patterns 

For plain weave, the choice of a unit cell that is representative of the periodic yarn 

structure is not unique.  As sketched in Fig.19a, there are multiple options in choosing a 

unit cell.  Option A has four complete yarns and includes a full period for each yarn.  It is 

identically repeated in space.  Option B, which is a quarter of the structure of option A, 

includes two yarns at a cross point and is repeated anti-symmetrically about the plane.  

Option C covers half a period and includes four half yarns.  The choice of unit cells 

depends on the deformation investigated and the consideration of the computational cost 

involved.  As it involves less computational expense, option B is adopted in most 

computations to be presented.  And a comparison between option B and A is provided as 

well.  Pictures of the yarn structures are shown in Fig.19b and 19c. 

(a) Plain weave (b) Twill weave (c) Satin weave 
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Figure 19: Multiple choices of unit cells 

A large amount of voids exists in the mesoscale structures of woven fabrics and 

these voids make a sound definition of a unit cell quite challenging.  Considering the yarn 

structure shown in Fig.19b, if the unit cell is defined as the bounding box and all of the 

contents therein, the cell boundary consists of both material boundaries and void 

boundaries.  It is difficult to enforce appropriate boundary conditions on voids and to 

keep track of the change of the void configuration as the cell is loaded.  In this study 

therefore, some assumptions are adopted to address this issue.  First, the homogenized 

constitutive relationship is formulated using the Lagrangian description and a bounding 

box is defined at the initial configuration.  Based on this, a volume fraction of yarns with 

respect to the whole cell can be determined.  The macroscopic second Piola-Kirchhoff 

B  

A
  

C  

(a) Unit cell options 

(b) Unit cell of option A (c) Unit cell of option B 
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stress, i.e. the volume average of the second Piola-Kirchhoff stress in the unit cell as 

given in Equation (4.58), can be calculated as follows 

 1

S
S

dV
ϕ −= ⋅∫S F P

YY
 (4.64) 

where SY  denotes the domain occupied by yarns in the reference configuration and ϕ  is 

yarn volume fraction in the reference configuration, i.e. 

 Sϕ =
Y

Y
. (4.65) 

For the volume integral of the microscopic strain field to vanish, periodic 

boundary conditions need to be specified on the unit cell.  To avoid the complication of 

enforcing the boundary conditions on voids, periodicity is only specified on the end faces 

of yarns.  In addition, since the in-plane behaviors are studied, the top and bottom faces 

are assumed to be traction-free.  These boundary conditions require an extra surface 

integration for the microscopic strain field to vanish as discussed in (4.48).  It is 

interesting to notice that for the surface integral of the microscopic strain can yield the 

strain through the thickness.  In this study, since only the in-plane properties are 

investigated, the prescribed macroscopic deformation Φ  is used and the surface integral 

is skipped. 

4.3.4 Transversely isotropic material model  

Each yarn itself possesses a microscopic structure, where long continuous 

individual fibers are loosely bundled together to form a single continuous element.  The 

mechanical properties of a yarn are determined by the properties of the fibers and their 

mechanical interactions.  While this motivates a new multiscale modeling problem, 

which relates the microscopic fiber behaviors to the overall yarn properties, such an 

approach is not pursued here due to the limitation of the scope of this study.  Instead, 

transversely isotropic hyperelastic constitutive models are used to model the yarns. 
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The yarn exhibits isotropic properties about the yarn longitudinal axis and the 

transversely isotropic hyperelastic model of Bonet and Burton [60] is adopted to describe 

the constitutive relation.  The strain energy function is defined as a combination of an 

isotropic component and a transversely isotropic component. 

 ( ) iso tiψ ψ ψ= +C , (4.66) 

where T=C F F  is the right Cauchy-Green deformation tensor.  The isotropic part is 

assumed to be Neo-Hookean and is defined as 

 ( ) ( )2

1

1 1
3 ln 1

2 2
iso I J Jψ µ µ λ= − − + − , (4.67) 

where ( )1 trI = C  and ( ) ( ) 1 2
det detJ = =   F C .  Assume that the principal material 

direction in reference configuration is denoted by vector A, the strain energy of the 

transversely isotropic part is defined as  

 ( ) ( ) ( )4 4 5

1
ln 1 1 1

2
ti J I I Iψ α β γ α= + + − − − −    (4.68) 

with 4I = ⋅A CA  and 2
5I = ⋅A C A .   

The second Piola-Kirchhoff stress, 2 ψ= ∂ ∂S C , has contributions from both the 

isotropic component and the transversely isotropic one and they read as 

 

( ) ( )
( ) ( )
( )

1 1

1
4 4

1 ,

 1 2 ln 2 1

.

iso

ti

J J

I J I

µ λ

β α β γ

α

− −

−

= − + −

= − + + + − ⊗  

− ⊗ + ⊗

S 1 C C

S C A A

A CA CA A

 (4.69) 

The Lagrangian elasticity tensor 2= ∂ ∂S CD  is deduced as 

 

( ) ( )

( )

1 1

1 1
4

2 1 2 1

 8 2

2 1 ,

iso

ti

J J J J

I

µ λ λ

γ α
β

− −

− −

= − − + − ⊗  

= ⊗ ⊗ ⊗ −

 + ⊗ ⊗ + ⊗ ⊗ − − 

C C

A A A A

A A C C A A

D G �

D A

G

 (4.70) 

where  

 IJKL I L JK J L IKA A A Aδ δ= +A  and ( )1 1 1 1 2IJKL IK JL IL JKC C C C− − − −= +G . (4.71) 
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The Kirchhoff stress T=τ FSF  and the Eulerian elasticity tensor T T= FF F FDc are 

obtained by pushing forward the associated material quantities given in Equations (4.69) 

and (4.70).  The results are summarized as follows 

 

( ) ( )
( ) ( )
( )

4 4

1

 1 2 ln 2 1

,

iso

ti

J J

I J I

µ λ

β α β γ

α

= − + −

= − + + + − ⊗  

− ⊗ + ⊗

τ b 1 1

τ 1 a a

a ba ba a

 (4.72) 

and 

 

( ) ( )

( )4

2 1 2 1

 8 2

2 1 ,

iso

ti

J J J J

I

µ λ λ

γ α
β

= − − + − ⊗  

= ⊗ ⊗ ⊗ −

+ ⊗ ⊗ + ⊗ ⊗ − −  

1 1

a a a a

a a 1 1 a a

�

�

c g

c a

g

 (4.73) 

where =a FA is the principal material direction in the deformed configuration;  T=b FF  

is the left Cauchy-Green deformation tensor;  a  and gare the push-forward of the tensor 

A  and G  and they are given component-wise as  

 ijkl i l jk j l ika a b a a b= +a  and ( ) 2ijkl ik jl il jkδ δ δ δ= +g . (4.74) 

4.3.5 Results 

The results of unit cell analyses based on the yarn structure shown in Fig.21b are 

compiled in this section.  The in-plane properties are studied under prescribed 

macroscopic deformation gradients associated with biaxial extension, uniaxial extension 

and in-plane shear.  The local stress fields are determined by solving the unit cell problem 

in Equation (4.63) and the macroscopic stresses are obtained by Equation (4.64).  Contact 

constraints are enforced between the two yarns and the formulation discussed in Section 

3.4 is utilized. 

In this unit cell model, the centerline of a yarn is represented as a half wave of a 

sinusoidal curve and two parameters are needed, i.e. the half period and the amplitude.  

As introduced by Kawabata et al [46], these two parameters can be identified using the 
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yarn density and the crimp ratio, two measures directly taken on a given fabric specimen.  

The parameters of a warp yarn are usually different from those of a weft yarn, which is 

exactly the origin of fabrics anisotropies.  For the computation presented here, however, 

the parameters are first assumed to be identical for both yarns, and this case herein is 

referred to as a balanced weave.  The cross section of a yarn is assumed to be an ellipse 

with a radius ratio of 1.5. 

The two yarns are initially orthogonal and aligned with the X- and Y- axis of a 

global Cartesian coordinate system.  The macroscopic deformation is specified with 

respect to the global coordinate system.  For example, a uniaxial extension along X-axis 

is specified as a load case where 11 221.0 and 1.0Φ > Φ = .  Periodic boundary conditions 

are specified on the pair of end faces of each yarn and rigid body motions are precluded 

by applying appropriate essential boundary conditions.  The volume fraction defined in 

Equation (4.65) is assumed to be 0.4ϕ = .  And the homogenized relations between the 

macroscale Green-Lagrangian strain (4.59) and the macroscale second Piola-Kirchhoff 

stress (4.58) are presented. 

4.3.5.1 Isotropic yarns 

Instead of assuming transverse isotropy, yarns are first modeled as an isotropic 

material.  The parameters associated with the transversely isotropic strain energy in 

Equation (4.68) are set to zeros and the isotropic material parameters in Equation (4.67)

are chosen as 48.82GPaλ =  and 32.55GPaµ = , which in an infinitesimal case recovers 

a Young’s modulus 84.62E GPa= , the value of Kevlar® KM2 fibers published by 

Cheng and Chen [61], and a Poisson’s ratio 0.3ν = . 

For biaxial extension, a macroscopic deformation ( )11 22, 1.2Φ Φ =  is specified 

and the deformed configuration is shown Fig.20b.  For uniaxial extension, the unit cell is 

stretched along X-axis with a macroscopic deformation 11 1.2Φ =  and 22 1.0Φ = .  The 

deformed configuration is given in Fig.20c.  The homogenized stress-strain relation is 
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almost linear for both cases (Fig.21).  It is also found that 11S  are almost identical for 

both biaxial- and uniaxial- extension and that 22S  is negligible compared to 11S  in 

uniaxial extension.  These facts indicate that there is little interaction between the two 

yarns and that the major responses in the unit cells are to decrimp the individual yarns.  

These observations are quite different from the expected responses of woven fabrics and 

the reason is due to the isotropic material model employed, where a strong shear 

resistance prevents the decrimping. 

For in-plane shear (Fig.20d), the prescribed macroscopic deformation is 

12 21 0.2Φ = Φ = .  A small biaxial pre-stretching is applied to establish a firm contact 

between the two yarns as the shear deformation develops.  The macroscopic shear stress 

is plotted against the deformation in Fig.22 and it is observed that 12S  spikes as shear 

deformation increases, i.e. the shear locking. 

 

Figure 20: Undeformed and deformed configurations of a balanced  
weave with isotropic yarns 

(c) Uniaxial extension 

(a) Undeformed configuration 

(d) In-plane shear  

(b) Biaxial extension 
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Figure 21:  11S  and 22S  vs. 11E  for biaxial and uniaxial extension  
of a balanced weave with isotropic yarns 
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Figure 22: 12S  vs. 12E  for in-plane shear of a balanced weave 
 with isotropic yarns 
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4.3.5.2 Transversely isotropic yarns 

With the problems observed for the isotropic yarns, a transversely isotropic 

material model is tested here.  The material parameters are chosen as follows:  

 ( )0.4457,  0.5154,  0.2714,  0.06548 and 10.54 GPaλ µ α β γ= = = = = ,  

which are deduced from the mechanical properties of a singe Kevlar® KM2 fiber given in 

[61] with its axial shear stiffness further reduced.  The assumption is that as a fiber 

bundle, a yarn has lower shear stiffness than a single fiber due to the sliding amongst 

fibers.  This assumption may need further investigation as the friction and/or the twisting 

in fibers may stiffen the yarn.  However, this set of parameters is adopted as a test 

example to show the effect of the material anisotropy in yarns on the overall fabric 

properties.  The deformations considered include biaxial extension, uniaxial extension, 

and in-plane shear.  The deformed configurations are shown in Fig.23. 

 

Figure 23: Undeformed and deformed configurations of a balanced  
weave with transversely isotropic yarns 

(a) Undeformed configuration (b) Biaxial extension 

(c) Uniaxial extension (d) In-plane shear  
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The homogenized macroscopic stress and strain relations in biaxial/uniaxial 

extensions are shown in Fig.24.  In addition, the stress-strain curve without considering 

the yarn contact is plotted as well.  Stiffening and nonlinearity are clearly observed in the 

stress-strain curves.  Due to the low shear stiffness, the yarns can be decrimped with little 

effort, which corresponds to the initial compliant decrimping response.  When firm yarn 

contact is established, stiffening occurs.  In Fig.24, 22S  for the uniaxial extension is 

significant compared to that in Fig.21, which indicates that for the transversely isotropic 

yarns, the crossing yarn is stretched as the contact develops. 
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Figure 24: 11S  and 22S  vs. 11E  for biaxial and uniaxial extension  
of a balanced weave with transversely isotropic yarns 

The unit cell is also loaded by biaxial compression.  Since no yarn contact develops as 

the unit cell deforms, compliant stress response is observed in biaxial compression.  

Fig.25 shows the biaxial extension-compression stress-strain relation.  Stiffening due to 

the shear locking is found in the stress-strain relation of in-plane shear (Fig.26). 
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Figure 25: 11S , 22S  vs. 11E  for biaxial extension and compression 
of a balanced weave with transversely isotropic yarns 
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Figure 26: 12S  vs. 12E  for in-plane shear of a balanced weave 
 with isotropic yarns 
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4.3.5.3 Full-period unit cell model 

The previous computations are based the quarter unit cell model shown in 

Fig.19c.  The model is anti-symmetrical about the fabric plane and does not represent a 

repeating pattern of the mesoscale yarn structure topology.  In this subsection, a full unit 

cell model as shown in Fig.19b is constructed and the homogenization results obtained 

with the full model are then compared with those of the quarter model. 
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Figure 27: Comparing 11S  vs. 11E  for the quarter and the full unit cell models 
in biaxial and uniaxial extensions 

The stress-strain relations for biaxial- and uniaxial extension for both models are 

plotted in Fig.27, and it is found that the responses of the full-period unit cell are more 

compliant compared to those of the quarter model.  One reason is due to the boundary 

conditions applied here.  In both unit cell models, the local vertical displacements on the 

end faces of a yarn are restricted.  The cross section at the yarn inflection point in the full 

model is free to move vertically.  However, as an end face, the section is restricted in the 
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quarter model.  Due to this reason, the quarter model is over-restricted compared to the 

full model and thus exhibits stiffer responses.  An even more pronounced difference is 

observed in in-plane shear (Fig.28), where two perpendicular yarns tend to slide 

vertically as they are jam against each other when the shear deformation develops.  

Stronger resistance is thus exerted in the quarter unit cell model as the vertical 

displacement is more restricted than in the full unit cell model. 

The deformed configurations of the full unit cell under the prescribed 

macroscopic strains are shown in Fig.29, where both a perspective view and a top view 

are presented for each load case.  In Fig.29c, it can be found that the yarns warp under the 

application of contact tractions. 
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Figure 28: Comparing 12S  vs. 12E  for the quarter and the full  
unit cell models in in-plane shear 
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Figure 29: Deformed configurations of the full unit cell model 

4.3.5.4 Mesh convergence 

The last study is on the mesh convergence of the unit cell model.  A model with 

finer mesh (Fig.30) is constructed and the stress-strain relations obtained with the fine 

model are compared with those of the coarse model in Fig.32 and Fig.33.  It is found that 

(c) In-plane shear  

(b) Uniaxial extension 

(a) Biaxial extension 
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the responses obtained with the finer mesh are generally stiffer.  This can be explained by 

the fact that more potential penetrations are identified with a finer mesh, which leads to a 

larger contribution from contact tractions.  One problem with the current collision 

detection algorithm is that the edge-to-edge penetration is not checked.  As shown in 

Fig.31, the edge-to-edge penetration occurs especially when a coarse mesh is employed 

and a fine mesh does help in identifying the penetration. 

 

Figure 30: The unit cell models with different mesh densities 

 

Figure 31: Edge-to-edge penetration in a coarse surface mesh 

(a) The coarse mesh (b) The fine mesh 
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Figure 32: Comparing 11S  vs. 11E  for unit cell models of different  
mesh densities in biaxial and uniaxial extensions 
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Figure 33: Comparing 12S  vs. 12E  for unit cell models of different 
mesh densities in in-plane shear 
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4.3.6 Discussion 

The examples presented above demonstrate the effectiveness of the computational 

homogenization and unit cell analysis approach in studying the material properties of 

woven fabrics.  Given yarn properties and the configuration of a yarn structure, the unit 

cell can predict the overall fabric properties.  This capability can be exploited when novel 

fabrics are to be designed, where various combinations of the design parameters can be 

tested and identified.  Compared to the early yarn structure models, the unit cell model 

described here captures the three-dimensional geometry of yarns and does not require any 

extra yarn interaction assumption, which usually introduces extra parameters and most 

likely more uncertainties as well.   

A major uncertainty of the unit cell model is the yarn properties.  In this study, 

yarns are modeled as a transversely isotropic material and the parameters are simply 

estimated from those of a single fiber.  However, as a complex structure with microscopic 

constituent fibers, a yarn exhibits properties different from those of a single fiber.  To 

realistically describe the material properties of a yarn, the same computational 

homogenization approach can be adopted.  On this level, a yarn is considered as a 

structure composed of interacting fibers on microscale and the yarn properties are 

determined by homogenizing the microscopic response of the fiber bundles. 

As presented in the examples, unit cell analysis yields homogenized stress and 

strain relations.  However, these relations may not be directly applicable to the 

macroscopic problems due to the limitations of available mechanism to incorporate such 

relations.  For example, in the clothing simulation the macroscopic problems are 

essentially the time integration of a dynamic shell model, which currently admits 

hyperelastic constitutive laws.  As a result, the homogenized constitutive relations based 

on the unit cell analysis can not be applied to the clothing simulation unless they are cast 

as a strain energy function definition.  For complex materials, such as woven fabrics, it 

can be challenging to find a single yet comprehensive mathematical form for the energy 
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function definition, which includes all complex mesoscale yarn interactions and their 

couplings with various load conditions.  Such an effort has been made by Kim [62], who 

constructed a transversely isotropic hyperelastic model to describe homogenized yarn 

properties based on unit cell analysis of fibers.  As observed in the paper, as the strain 

increases the hyperelastic model and the homogenization results deviate.   

An alternative approach is multiscale modeling.  Rather than constructing a 

material model and fitting homogenization results to the model, the unit cell analysis is 

conducted when the constitutive relation is needed on macroscale.  The idea is to skip the 

closed form of the stress-strain relation but to consult the unit cell whenever the 

constitutive relation is needed.  An outline of such an approach is described in [56].  One 

challenge is to obtain the sensitivity of the unit cell problem, which may be needed when 

constructing the tangent operator on macroscale, a procedure similar to derive consistent 

tangent operators for return mapping algorithms in computational plasticity as discussed 

by Simo and Hughes in [63]. 
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CHAPTER 5 

CLOTHING-WEARER INTERACTION STUDY 

In this chapter, unilateral interactions between clothing and a wearer are studied.  

The clothing is modeled by the macroscale shell fabric model developed in Chapter 2 and 

the contact constraints between the clothing and the human body are enforced using the 

explicit contact algorithm introduced in Chapter 3.  Human motions are prescribed and 

the contact forces that clothing exerts on the body are calculated so that the effects of 

these contact forces can be related to human performance measures. 

The moment of all contact forces about joint centers are spatially integrated to 

obtained instantaneous joint torques.  Although the joint torque can be readily determined 

by spatial integral of the torques exerted by individual contact forces, care must be taken 

to determine the correct contributing area for a given joint.  For example, whether 

clothing contact forces on a forearm contribute to a meaningful torque about the shoulder 

joint is an issue to be studied.  This problem is beyond the scope of this study, however, it 

is not investigated here.  A simple assumption utilized in the following study is that 

clothing contact forces on a given body segment only contribute resisting torque to the 

joints directly connected to the segment. 

Two problems are studied in this chapter.  One is the sleeve-arm interaction 

problem, where the elbow flexing motion at an arm clothed in a sleeve is considered.  

Various parameters of the sleeve are investigated and the changes in the computed 

resistance torques about the elbow are compared.  The other problem involves a fairly 

complicated human motion, in which the lower body clothed in a pants model walks and 

then steps over a two-foot tall obstacle.  The computed time histories of the resistance 

torques exerted by the clothing about the right knee for two types of pants are compared.   
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5.1 Human body representation and motion description 

As discussed in Chapter 3, general mesh-to-mesh collision detection can be 

expensive for large scale problems.  In clothing-wearer interaction studies, a fine clothing 

mesh is usually employed to capture the flexible characteristics of fabrics.  If the human 

body surface were to be modeled with a fine polygonal mesh, the cost of crude mesh-to-

mesh collision detection would be very high.  For this reason, the human body surface is 

grossly approximated herein by an assembly of ellipsoids, with which collision detection 

can be readily performed.  An example is shown in Fig.34, where the lower body is 

represented by eight ellipsoids.  For further simplification, the ellipsoids (the human body 

surface) are assumed to be rigid such that surface deformation, including that incurred by 

clothing interaction, is neglected.  This assumption allows the contact problem to be 

solved as Signorini’s problem as discussed in Chapter 3. 

 

Figure 34: A lower-body walking model using ellipsoids 

In the current study, the wearer’s motion is fully prescribed and does not change 

in response to clothing resistance forces.  Depending on its complexity, the motion is 

specified using different kinematics descriptions.  A simple motion, such as flexing the 

elbow of an arm, can be specified as a time-history function of the rotation angle.  
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Complex motions, such as the walking shown in Fig.34, however, are described by 

leveraging the motion capture techniques.  An optical motion capture system is utilized 

here and a human subject, wearing a special motion capture suit with reflective markers 

attached, is asked to perform given motions.  The time history of each marker’s position 

is recorded and the captured motion is re-constructed by the system on the subject’s 

digital counterpart, a predefined skeleton model, where the position history of each joint 

is calculated. 

For the clothing-wearer study, the motion based on the skeleton model needs to be 

further mapped to the ellipsoidal human model.  Suppose for each segment, the position 

histories of two joints 1J  and 2J , and an auxiliary marker M are known, the centroid and 

the orientation basis of the ellipsoid at any instant in time are then constructed as follows: 
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 (5.1) 

A schematic of the motion reconstruction is shown in Fig.35.  

 

Figure 35: Re-constructing the motion of each ellipsoid using motion capture data that 
records for each ellipsoid the position histories of points J1, J2, and M 
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5.2 Garment modeling 

Clothing or garment is generally constructed by sewing pieces of fabric patches 

together.  The properties of a garment depend not only on the fabric properties but also 

on the structural factors, such as seams, stitches and multiple fabric plies etc.  In this 

study, these structural factors are neglected.  No stitches or seams are modeled and a 

garment is assumed to be a uniform system of given fabrics.  Multiple fabric meshes are 

simply combined to create a single mesh for a garment model.  The sleeve studied in 

Section 5.3 is modeled as a mesh of a cylindrical tube.  While the pants in Section 5.4 are 

constructed by combining four rectangular meshes along appropriate seam lines.   

5.3 Arm-sleeve interaction study 

In this problem, the interaction between an arm represented by two rigid 

ellipsoids and a cotton sleeve is studied.  The motion considered is to flex the forearm 

about the elbow joint while keeping the upper arm fixed.  The torque exerted by the 

sleeve about the elbow joint is calculated.  The sleeve is modeled as a cylindrical tube 

with length 0.5L m= , radius 0.06R m= , and thickness 1t mm= .  Boundary conditions 

are specified to restrain the motion of fabric nodes around the shoulder.  The upper- and 

fore-arms are modeled as two ellipsoids, one fixed in space and the other rotating about 

the joint with a constant angular velocity.  The total rotation angle is 57�  before severe 

clothing self-contact occurs.  The friction between the sleeve and the body surface is 

considered and a Coulomb friction coefficient 0.1µ =  is assumed.  The material 

properties used in the computation are as follows:  Young’s modulus in warp and weft 

directions 1.2E MPa= , shear modulus 0.1G MPa= , and mass density 3436 /Kg mρ = . 

5.3.1 Convergence study 

The convergence behavior of the model in terms of mesh refinement is 

investigated.  Four models with varying mesh densities (Fig.36) are constructed and then 

resistance torque vs. rotation angle curves are obtained (Fig.37).  It is found that the 
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curves deviate slightly but follow the similar trend of reduced resistance with increasing 

refinement.  A comparison of the computed deformations (Fig.38) shows that finer 

meshes capture local fabric buckling, which may not occur on the coarser meshes.  The 

finding of increasing localized fabric buckling with increasing mesh refinement indicates 

the instability of the system.  The same convergence study was conducted with a higher 

friction coefficient 0.5µ = , and better convergence behavior is observed (Fig.39).  As 

shown in the deformed configurations (Fig.40), higher friction between the arm and the 

sleeve prevents the sleeve from falling down onto the elbow joint and thus reduces the 

amount of wrinkling that occurs at the elbow. A comparison of Fig.37 and Fig.39 

indicates that clothing resistance torques increase very significantly with higher friction 

between the arm and sleeve. 

 

Figure 36: Sleeve models of increasing mesh refinement for convergence study 

Mesh I: 10x13 elements Mesh II: 15x20 elements 

Mesh III: 20x26 elements Mesh IV: 30x39 elements 
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Figure 37: Computed clothing resistance torques about the elbow joint for a crimped 
cotton sleeve with varying mesh refinement; the Coulomb friction coefficient 
between arm and sleeve was 0.1µ =  

 

Figure 38: Illustration of localized clothing buckling in the elbow joint with increasing 
mesh refinement (low friction 0.1µ = ); Meshes are shown at elbow flexion 

angle 37α = �  
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Figure 39: Computed clothing resistance torques about the elbow joint for a crimped 
cotton sleeve with varying mesh refinement; Coulomb friction coefficient 
between arm and sleeve was 0.5µ =  

 

Figure 40: Local buckling is less sensitive to mesh refinement for higher arm-sleeve 
friction coefficient 0.5µ = . Meshes are shown at elbow flexion angle37α = � . 
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5.3.2 Friction 

The friction between clothing and human body surface is an important factor 

affecting the interaction of the two.  For a sleeve model with a well-refined mesh, the low 

friction case ( 0.1µ = ) is compared with a high friction case ( 0.5µ = ).  It is found once 

again that in the low friction case the sleeve slips down as the forearm rotates upward.  

Alternatively, in the high friction case, the sleeve does not slide down the forearm.  

Snapshots of the sleeve deformation for both the low and high friction cases are shown in 

Fig.41 at two elbow flexion angles, 37α = � and 57α = � .  It is noted once again that 

higher friction between the arm and sleeve translates to higher clothing resistance torque 

as indicated in Fig.42. 

 

Figure 41: Sleeve deformations for different friction coefficients 

37α = � , 0.1µ =  

57α = � , 0.1µ =  

37α = � , 0.5µ =  

37α = � , 0.5µ =  
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Figure 42: Clothing joint resistance torque exerted for different  
surface friction coefficients 

5.3.3 Effect of fit 

To briefly study the effect of clothing fit on resistance, the radius of the sleeve 

tube is increased to 0.07R m=  from R=0.06m while the dimensions of the ellipsoidal 

arms remain the same.  The resisting torque exerted by the looser-fitting sleeve (Fig.43a) 

is compared with that of the original tighter-fitting sleeve (Fig.43b).  For both fits, a skin 

surface friction coefficient 0.5µ =  is used.  The computed resisting torque exerted by the 

looser-fitting sleeve (Fig.44) is significantly less than that of the tighter-fitting sleeve for 

elbow flexion angles greater than 20� . 
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Figure 43: Deformed configurations of sleeves with different radii 
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Figure 44: Computed resisting torques exerted by sleeves with different radii; the sleeve 
is compliant crimped cotton, and the skin friction coefficient is 0.5µ = . 

(a) Loose fit: R=0.07m (b) Tight fit: R=0.06m 
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5.3.4 Effect of fabric thickness 

Fabric thickness is another factor that can affect clothing-wearer interaction. A 

thicker fabric has greater mass and larger stiffness.  Membrane stiffness increases in 

proportion to the fabric thickness, while the bending stiffness increases in proportion to 

the thickness cubed.  Here, the thickness of the sleeve fabric is doubled to 2t mm=  and 

the joint torque is compared with the original case where 1t mm= .  All other properties 

remain the same, and a surface friction coefficient 0.5µ =  is assumed.  The computed 

torque resistance (Fig.45) of the thicker fabric is roughly double that of the thinner fabric, 

which indicates that membrane rather than bending behavior of the sleeve is dominant.  
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Figure 45: Comparison of sleeve torque resistance with different fabric thickness 

5.3.5 Effect of fabric material properties 

The last variation of the arm-sleeve problem examined here focuses on the effect 

of fabric material properties.  Three sets of material properties are examined, roughly 
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corresponding to (I) a crimped cotton sleeve of thickness 1mm; (II) a taut de-crimped 

cotton fabric of thickness 1mm; and (III) a de-crimped plain-weave Kevlar fabric of 

thickness 1mm. 
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The shear stiffness of fabrics significantly affects their drapeability.  For all of the three 

material assumptions considered here, the shear stiffness of the fabric in each case is 

taken as 1/200th of the Young’s modulus in the yarn directions.  Low surface friction 

0.1µ =  is assumed for all of the computations.  The computed resistance torques for the 

three different sleeve materials are presented in Fig.46.   
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Figure 46: Comparison of sleeve torque resistance for types of fabrics 

A stiff response is observed for both material sets II and III, and then a compliant 

response follows after the rotation angle reaches about 15� .  By tracking the deformation 
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of the sleeve, it is found that before reaching an elbow flexion angle 15α = �  the sleeve 

response is governed by bending; after that, the sleeve literally slides down along the 

forearm.  As would be expected, it is also observed that the resistance torque exerted by 

each sleeve is roughly proportional to the stiffness of the material. 

5.4 Interaction of pants with walking/stepping legs  

In this problem, a human subject walked four strides, with the third involving 

stepping over an obstacle 0.5m in height.  The motion of this human was captured with an 

array of eight infrared VICON cameras, and the motions were then mapped onto the 

assemblage of ellipsoids (Fig.34) to make them walk.  A pair of pants was then placed 

onto the human model (Fig.47) in the following sequence: (a) the feet of the human 

model were removed; (b) the pants of the human model were pulled up over the legs and 

pelvis; (c) the feet of the human model were then restored; and (d) the effect of a belt was 

created by tensioning the fabric at the waistline.  With the garment on the human model, 

a simulation of the interaction between the pants and the lower body walking and 

crossing the obstacle was then undertaken (Fig.48).  Two sets of pants were modeled, 

both made of compliant, crimped cotton.  The first pair had a thickness of 1mm while the 

second had a thickness of 2mm. 

The resistance that the pants models exert on the legs as they undergo their fully 

prescribed motions was calculated by taking the contact forces exerted by the clothing on 

the legs at each instant of the simulations and computing their instantaneous moment 

magnitude about the knees.  Such computations are shown in Fig.49 for two pairs of 

cotton pants which are identical except for the fabric thickness.  Not surprisingly, the 

thicker pants exert greater resistance torques than do the pants with the thinner fabric.  

The computed torques about the right knee are due strictly to the pants at the knee level 

and below.  Contributions of the upper pant legs to the resistance have been neglected 

here. 
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Figure 47: Sequence for the human model to don a pair of pants 

 

 

Figure 48: Simulation of pants interacting with lower body striding and then stepping 
over an obstacle.  Numbers below each figure indicate the frame number of 
the simulation (c.f. Fig.49) 
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Figure 49: Computed resistance torques exerted by two pairs of cotton pants of different 
fabric thicknesses about the right knee 



 

 

133 

CHAPTER 6 

SUMMARY AND DISCUSSION 

6.1 Summary 

6.1.1 Macroscale 

A novel computational framework that allows quantification of the mechanical 

interactions between clothing and wearers is developed.  In the framework, clothing is 

modeled using geometrically nonlinear continuum degenerated shell finite element 

methods and the wearer is represented by a digital human model with simplified 

ellipsoidal surface definition and motion capture kinematics description.  The contact 

tractions exerted by clothing on the human model are calculated as a fundamental 

quantity, based on which objective performance measures can be derived to quantify the 

impact clothing imposes on the wearer.  Sample studies are presented, where the effects 

of various factors (fabric thickness and properties, fit, and skin friction etc.) on the joint 

torques exerted by clothing are investigated, and these studies demonstrate the feasibility 

of the proposed computational framework.  This novel computational facility allows the 

clothing-wearer interactions to be studied based on objective quantities and enables better 

understanding of the impact that clothing may impose on wearers.  With such 

understanding, better designs of protective clothing systems with less performance 

restrictions can be obtained. 

In developing the computational framework, some long-standing issues in solid 

mechanics are addressed.  As thin and flexible media, fabrics exhibit highly unstable 

mechanical behaviors and undergo arbitrarily large deformations, which pose a challenge 

on the robustness of the computational model.  In this work, a geometrically nonlinear 

shell element based on dynamic formulation is adopted to address this issue and it is 

proven to be effective in capturing the large fabric deformations with adequate 

robustness.  Both implicit and explicit solution schemes are implemented and Rayleigh 
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damping is included to simulate the dissipation in the model.  The clothing-wearer 

contact is formulated as a Signorini’s problem by assuming rigid human body surfaces 

with prescribed kinematics and the problem is solved by an explicit Lagrange multiplier 

method.  The expense for collision detection is minimized by using ellipsoidal surface 

definitions. 

6.1.2 Mesoscale 

Woven fabrics exhibit complex material behaviors that vary in response to 

changes in different loading conditions.  It is challenging to develop a comprehensive 

constitutive model that captures all these complexities.  In this work, the relation between 

the macroscopic fabric properties and the mesoscale yarn structures are studied by 

applying computational homogenization techniques.   

A novel unit cell model with detailed three-dimension yarn geometries and 

general multi-body contact algorithm is developed.  In this model, yarns are modeled as 

transversely isotropic media and their interactions are formulated as a multi-body 

frictional contact problem, which is solved by an augmented Lagrange multiplier method.  

Compared to previous efforts, the proposed model makes no simplifications on the yarn 

geometries and the yarn interactions, and it takes into account various combinations of 

loading conditions.  The local response of the yarn structure unit cell model is solved for 

a given macroscopic strain and the macroscopic stress is obtained by homogenizing the 

total stress in the mesoscale model.  It is demonstrated that the proposed unit cell model 

captures typical features of fabric behaviors. 

The proposed unit cell model of mesoscale yarn structures provides a useful 

numerical tool for studying fabric properties.  Compared to traditional experimental 

approaches, which require fabrication of testing samples, the unit cell analysis can be 

applied to test various combinations of factors that can affect the overall fabric properties 

and makes itself a rapid prototyping tool for fabric designs.   
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6.2 Discussion 

The main effort of this research is the construction of the proposed computational 

clothing modeling framework.  The framework includes four major components: a 

macroscale fabric model, a mesoscale fabric/material model, a contact computation 

component, and a digital human model.  Simplification assumptions have been 

introduced when these components are developed and integrated.  In this section, these 

assumptions are revisited and future improvements on them are discussed as well.  

6.2.1 Macroscale fabric modeling 

The macroscale fabric model is based on the continuum degenerated shell theory, 

where the bending behavior is obtained by numerical integration of stresses and strains 

through the shell thickness.  This assumption is valid for a continuum, while for fabrics, 

which possess material discontinuities through the thickness, it may need to be revised.  

A resultant shell formulation may be more appropriate to address this issue.   

Another assumption that deserves further investigation is the constitutive model.  

Currently a linear relation between the second Piola-Kirchhoff stress and the Green 

Lagrange strain, i.e. St. Venant model, is followed.  This over-simplifies the material 

responses in fabrics even in the small strain range where complex yarn interactions on the 

mesoscale lead to highly nonlinear behaviors as demonstrated in Chapter 4.  This topic is 

closely related to the multiscale modeling approaches discussed in the following 

subsection.  

6.2.2 Multiscale modeling approaches 

The proposed unit cell analysis of mesoscale yarn structure model is currently 

independent of the macroscale fabric model and the homogenized stress-strain relation is 

not incorporated into the macroscale model.  Two types of multiscale approaches are 

usually adopted to incorporate the homogenized constitutive relation into the macroscale 

model.  One is the hierarchical multiscale approach, where the homogenized stress-strain 
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relations obtained by unit cell analyses are described by some mathematical constitutive 

functions, which are employed on the macroscale.  However, the challenge with such an 

approach is the complexity of fabric properties, which rarely admits such comprehensive 

constitutive function expressions.  An alternative approach is the concurrent multiscale 

method, which starts a mesoscale unit cell analysis whenever the constitutive relation is 

requested by the macroscale computation.  With this approach, the macroscopic strain is 

applied as prescribed load on the unit cell and the resultant homogenized stress is 

returned to the macroscale problem as the response.  The concurrent approach deserves 

further exploration for incorporation of realistic fabric properties.  It is worth noting that 

concurrent multiscale modeling requires robust and efficient solution of the unit cell 

problem, and much progress has been made on this issue in this work. 

6.2.3 Collision detection 

In the current framework, the collision detection is simplified to reduce the 

computational expense.  On the macroscale, the collision detection is conducted between 

a general clothing mesh and ellipsoidal surfaces that represent segments of the human 

body.  On the mesoscale, mesh-to-mesh collision detection is confined to a local level, 

where only the neighbors in the initial configuration are checked.  For highly distorted 

meshes, global collision detection is required and the efficiency of the algorithm becomes 

a significant issue.  An efficient global mesh-to-mesh collision detection algorithm is 

beyond the scope of this study and was not pursued here.  However, if a general body 

surface mesh as shown in Fig.50 is to be employed or the self-contact between clothing is 

to be considered, an efficient collision detection algorithm is needed.   

6.2.4 The human model 

As the main focus of the study is on clothing modeling, a simple human model is 

employed.  As mention above, the body is approximated by an assembly of ellipsoids 

with its kinematics description obtained from motion capture.  An obvious limitation of 
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the current model is the loss of geometric fidelity by using ellipsoids.  To address this 

issue, realistic human body surface models need to be constructed.  Body scan techniques 

can be employed for this purpose and a sample body scan mesh by courtesy of Professor 

Susan Ashdown and her Cornell Body Scan Research Group is shown in Fig.50.  

 

Figure 50: A human body surface mesh constructed using body scan techniques  
(courtesy of Dr. Ashdown at Cornell University) 

Body scans can only capture the body surface at static postures.  For clothing-

wearer studies, however, the continuous evolution of the surface is needed as the human 

model engages in activity.  To create the information, the body scan and the motion 

capture technique should be combined.  The idea is to decompose the mesh into segments 

and to associate each of them with the corresponding segment in a motion capture model.  

The kinematics description obtained from motion capture system can then be mapped 
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onto the body surface mesh and drive it through the captured motion.  With this method, 

the deformation of the body surface is not included and some mesh discontinuity and 

overlapping will inevitably occur as the motion proceeds.  Mesh merging and patching 

techniques are thus needed to construct a continuous surface mesh in motion.   

 

Currently the motion of the human model is completely prescribed either by time 

functions of joint angles or motion capture data.  This treatment limits the clothing-

wearer interaction to a unilateral situation, where clothing only responds passively to the 

given motion while cannot change the motion even though the restriction it exerts has 

made the motion unachievable.  To enable the adaptation, more intelligent digital human 

model has to be employed.  In addition, the sensitivity of the clothing restriction with 

respect to a given motion has to be investigated.   

Another simplification used in the human model is that the body surface is rigid.  

This assumption simplifies the contact computation while excludes the effect of surface 

deformation in response to the clothing restriction.   

6.2.5 Computational issue 

The proposed clothing modeling framework is computationally intensive.  On the 

macroscale, time integration of a dynamic system with complex contact computation and 

collision detection is performed.  As mentioned in Section 6.2.3, a major bottleneck is an 

efficient global mesh-to-mesh collision detection algorithm.  In addition, fast time 

integrators and parallel computation techniques are worth further exploring as well.  The 

size of mesoscale yarn problem is relatively small.  However, if it were to be applied in 

the multiscale computation framework, where each integration point corresponds to a 

mesoscale unit cell analysis problem, parallelization is definitely necessary. 
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6.2.6 Garment design 

A huge factor that has been neglected in the current work is the garment design.  

In the example presented in Chapter 5, the pants are constructed by merging four 

rectangular mesh patches together.  No design patterns are followed and the seams are 

not modeled.  The neglected factors can be significant in determine the interactions of the 

final garment on the wearer and they need to be considered in the future work.  For 

clothing pattern design, commercial garment computer-aided design (CAD) software, 

such as OptiTex, can be utilized.  The pattern geometries can be created interactively 

with the graphical user interface the CAD software and then imported to the computation 

framework proposed in this work. 
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