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Presentation Overview

e Introduction to continuum structural topology
optimization

* Alternative design-variable formulations

» Design-variable interpolation options

* |ssues of structural sparsity and instability

* Problem formulations for sparse structures

e Analysis problem size reduction technique

e Examples
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What is* Structural Topology Optimization”

» Size Optimization

 Shape Optimization
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» Topology Optimization
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Essentials of Continuum Structural Topology
Optimization

» Discretization of structural domain Q into a mesh of nodes/volumes.

 Use discretized model to describe spatial distribution of design variables.

» Specify a micro-mechanical model to relate local design variables to local
mechanical properties.

 Pose and solve an optimization problem to extremize structural performance
subject to material usage constraints.
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The*Dengty” or “Volume-Fraction”
Formulation

* Most widely used today
» Design variables: b={@,, @, @,, ..., ¢}

where @ is either an element or node-based volume fraction of
the structural material.

e Micro-mechanical (or mixing) rule:

0(X) = @(X) Ogyig(€) + [1-9°(X)] O,i4(E)

applies more easily to general elastic and inelastic material
model s than do micro-structure based formulations.

Observation: The larger p, the stronger the penalty against
designs that utilize mixtures.
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Characteristics of Alternative Formulations
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a) 1; =90; Ly=70; F=10°
Egqig = 7x10% v = 0.333

Short Cantilever Beam
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P=1 solution; Am=0.05;
b% = 1.0; IT = 2.07%x1073

€} P-=1solution; Am = 0.05;
b%=0.3; IT = 2.07x1073
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d) Penalized sol.; Ap= 0.05;

b0 = 1.0; T = 3.16x1073

€) Penalized sol.; Ay, = 0.05;
b= 0.3; IT = 1.17x10"2
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mbin F(b,u) such that

r(b,u)=0
g.(b,u)<0,i =1,2,...,n

Design Optimization Algorithm to Solve:

Initialization
b =ho

A

Solve for u(b) such that
r(b,uy=0

Sengitivity analysis
compute(dF/db; dg/db)
v

Optimization step
Ab= Ab(dF/db; g; dg/db)

Yes
Optimality?

No

Stop
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Displacement & Design Variable
|nter polation Options

Q4/U: Q8/U: Slightly
unstable unstable
Q4Q4. QO/U: Slightly
slightly unstable
unstable

zzzQQICM: Stable
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Established characteristics of continuum structural topology

optimization as applied to civil structures

. The Q4/U e ement-based numerical formulation has severe
instabilities that result in “checkerboarding” designs.

. As modeled, continuum structures are unrealistically “heavy”.
. lack the sparsity of civil structures
. continuum joints transmit moments
. cannot capture potential buckling behaviours

. The optimization problem admits a large number of locally

optimal design solutions.
Here, we attempt to address the first two problems.
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a) design featuring checkerboarding.  b)filtered design without checkerboarding.
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Element-based design variables (Q4/U):
» solid volume-fraction design field can be discontinuous

across element boundaries.
» this can lead to the phenomenon of “checkerboarding”

design solutions.
» checkerboarding designs can be eliminated via a number

of ad-hoc spatid filtering techniques.

Node-based design variables (Q4/Q4):

* forces continuity of solid volume-fraction design
variables across element boundaries.

» does not admit “checkerboarding” design solutions.

* requires no spatial filtering techniques.

« found by Jog & Haber (1996) to be dightly unstable
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Layering instability appearing in Q4/Q4
formulation
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Structural Sparsity Issues

 Typically, large scale civil structures (as bridges) are sparse.
 occupy only a small fraction of the structure’s envelope
volume.

o Structural models must capture the characteristic sparsity to
yield realistic performance.

e Thistypically requires fine meshing of structural domain Q.
 This adds to the computational expense of the analysis
and design process.
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Alternative Design Formulationsto Achieve
Stable, Sparse Structures

e Option 1;

» Perform structural analysis considering geometrically
nonlinear behaviorsand instabilities.

* Design/Optimize the structureto avoid instabilities.

e Option 2:

» Perform linearized buckling stability analysis on the
structure.

* Design/Optimize to maximize minimum critical buckling
load.
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Option 1. Analysisoptimization of the structure
asanonlinear hyperelastic system.

Constitutive law

VO =LKL D) WeLdr®-3. = opeaed,
00
Variational formulation

(g = [ayadQ+ [hdidr,  d@W)= [ddL(5)dQ+ [ 7,d5,0Q
Qs Qs Mn Qs Qs

Discrete Equilibrium
A =t —(f9r, =0 (Fha= j(BA) 700 (F)= IIQJI\IA%+1dg)S+INAh1+1dr

K8 = jB JkBkldQ + jNJerNBJ,IdQ




Option 1 (continued):

Solvefor the Minimum Critical Instability L oad
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tn:_o;ofn:o; Algorithm for Finding
A=, | First Point of Instability
P
P
& Yes cr
A > 1 Critical state
tn+1 = tn + At m= mmax? —¥ found
v t
Canr ., =Obesolved, and | _| At=AU4 >
isK ., positive definite? m=m+1
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Option 1: (Continued)
 Objective function:

*F = (fcrit)_1
e Once the minimum point of instability is found:

fint = By [FdQ
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e compute design derivative of minimum critical load.
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Option 2: Structure modeled as linear elastic with
Instability computed by linearized buckling analysis

Linear elastic problem:
K, mW=f*

Associated generalized eigenvalue problem:

T
v KLy
K, (b)y +7AG(u,b)y =0; ="
L (b)y +AG(u,b)y VTG v
Modified eigenval ue problem
A—1
[(KL +G)+“/KL]E{I’:O; [Y:Tj
Objective function and design derivative
1
F(u,b) = ,
(u.0) min(A.) t
dL (0G 10K, a7 0K | of &
— =— —+— + [ -
db "’(ab xabj"’ (U)[ab ab}
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Potential Problem in Structural Analysiswith
Option 1.

* Elementsdevoid of structural material are highly
compliant.

* These elements can undergo excessive deformation
creating difficulty/singularity in solving the
structural analysis problem.

» A strategy to circumvent this problem is needed.
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Analysis Problem Size Reduction Technique

|dentify void elements

|

|dentify and restrain “prime’ nodes
(those surrounded by void elements).

l

|dentify and temporarily remove
‘prime” elements (those surrounded only

by prime nodes).
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Test Problem #1 for Design of Sparse
Buckling Sensitive Structure.

» Design optimum sparse, elastic structure in the circular
domain to carry the design load back to fixed, rigid walls.
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Old Q4/U Design Solutionsto Circle Problem

» Generalized compliance objective function w/ spatial
filtering

f)
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New Q4/Q4 Solutionsto Circle Test Problem:

(a)

(b) (d) ()
(@) Mesh used in analysis/design
(b) Design solution [20% material, option #1]
(c ) Deformed shape of (b)

(c) (€)

(d) Design solution [5% material, option #1]
(e) Deformed shape of (d) (2)
(f) Design solution [5% material, option #2]

(g) Deformed shape of (f)
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Fix-end Beam Problem

Option #1.

() Mesh, restraints, load case [
(b) Design solution :
(c) Design at onset of instability

Ty,
Option #2:
(d) Mesh, restraints, load case
(e) Design solution

(f) Buckling mode (local) (b) ()
|\CB/I I\fi/l




e gpan = 1000m; max height = 400m;
* design can occupy only 10% of envelope volume
16000 elements, 16281 design variables used.

Spar se, Long Span Canyon Bridge Concept Design Problem:

¥ =10510im3

100
F

30

1000

Problem description

minimizing linear elastic compliance
M =23010"; »=8.3010"

maximizing the minimum buckling load
M =6.500"; L =4.9010°
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Design of Long-Span Over-Deck Bridge

3000

[——n] [t—»]
375 373
(a)
NN AN
(k3 (c)

Design to minimize elastic Design to maximize minimum
compliance linearized buckling eigenvalue

M=1.65 A=32010° M =8.20: A =1.510*

e

25



Summary and Conclusions

- For continuum structural topology optimization methods to be useful
In concept design of large-scale civil structures, they must be ableto
detect potential buckling instabilities.

» modeling of sparse structures at high mesh refinement.

o solution of structural analysis problems with geometric
nonlinearity.

- The proposed formulations are promising for concept design of stable,
sparse structural systems.
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