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Presentation Overview

• Introduction to continuum structural topology
optimization

• Alternative design-variable formulations
• Design-variable interpolation options
• Issues of structural sparsity and instability
• Problem formulations for sparse structures
• Analysis problem size reduction technique
• Examples
• Summary
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What is “Structural Topology Optimization”

• Size Optimization

• Shape Optimization

• Topology Optimization
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Essentials of Continuum Structural Topology
Optimization

• Discretization of structural domain Ωd into a mesh of nodes/volumes.
• Use discretized model to describe spatial distribution of design variables.
• Specify a micro-mechanical model to relate local design variables to local
mechanical properties.
• Pose and solve an optimization problem to extremize structural performance
subject to material usage constraints.
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The “Density” or “Volume-Fraction”
Formulation

• Most widely used today

• Design variables: b={φ1, φ2, φ3, …, φn}

where φi is either an element or node-based volume fraction of
the structural material.

• Micro-mechanical (or mixing) rule:

σσσσ(X) = φp(X) σσσσsolid(εεεε) + [1-φp(X)] σσσσvoid(εεεε)

applies more easily to general elastic and inelastic material
models than do micro-structure based formulations.

Observation: The larger p, the stronger the penalty against
designs that utilize mixtures.
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Design Optimization Algorithm to Solve:

Optimality?

Initialization
b = b0

Solve for u(b) such that
r(b,u) = 0

Sensitivity analysis
compute(dF/db; dg/db)

Optimization step
∆b= ∆b(dF/db; g; dg/db)

Stop
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Displacement & Design Variable
Interpolation Options

Q8/U: Slightly
unstable

Q9/U: Slightly
unstable

Q9/Q4: Stable

Q4/Q4:
slightly
unstable

Q4/U:
unstable
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Established characteristics of continuum structural topology
optimization as applied to civil structures
• The Q4/U element-based numerical formulation has severe

instabilities that result in “checkerboarding” designs.
• As modeled, continuum structures are unrealistically “heavy”.

• lack the sparsity of civil structures
• continuum joints transmit moments
• cannot capture potential buckling behaviours

• The optimization problem admits a large number of locally
optimal design solutions.

• Here, we attempt to address the first two problems.
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Element-based design variables (Q4/U):
• solid volume-fraction design field can be discontinuous

across element boundaries.
• this can lead to the phenomenon of “checkerboarding”
design solutions.

• checkerboarding designs can be eliminated via a number
of ad-hoc spatial filtering techniques.

Node-based design variables (Q4/Q4):
• forces continuity of solid volume-fraction design

variables across element boundaries.
• does not admit “checkerboarding” design solutions.
• requires no spatial filtering techniques.
• found by Jog & Haber (1996) to be slightly unstable
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Layering instability appearing in Q4/Q4
formulation

Cure with uniform mesh
refinement.

Cure with mesh refinement in
direction of layering.
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Structural Sparsity Issues

• Typically, large scale civil structures (as bridges) are sparse.
• occupy only a small fraction of the structure’s envelope
volume.

• Structural models must capture the characteristic sparsity to
yield realistic performance.

• This typically requires fine meshing of structural domain Ωd.
• This adds to the computational expense of the analysis
and design process.
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Alternative Design Formulations to Achieve
Stable, Sparse Structures

• Option 1:

• Perform structural analysis considering geometrically
nonlinear behaviors and instabilities.

• Design/Optimize the structure to avoid instabilities.

• Option 2:

• Perform linearized buckling stability analysis on the
structure.

• Design/Optimize to maximize minimum critical buckling
load.
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Option 1: Analysis/optimization of the structure
as a nonlinear hyperelastic system.

Constitutive law

Variational formulation

Discrete Equilibrium
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Option 1 (continued):

Solve for the Minimum Critical Instability Load

n=0; m=0;
t0 = 0;
∆t = ∆tbaseline;

tn+1 = tn + ∆t

Can r n+1 = 0 be solved, and
is K n+1 positive definite?

n = n + 1

∆t = ∆t/4
m = m + 1

Yes No

m = mmax?
Critical state

found

Yes

Algorithm for Finding
First Point of Instability
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Option 1: (Continued)

• Objective function:

• F = (fcrit)-1

• Once the minimum point of instability is found:

• compute design derivative of minimum critical load.
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Option 2: Structure modeled as linear elastic with
instability computed by linearized buckling analysis

Linear elastic problem:

Associated generalized eigenvalue problem:

Modified eigenvalue problem

Objective function and design derivative
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Potential Problem in Structural Analysis with
Option 1:

• Elements devoid of structural material are highly
compliant.

• These elements can undergo excessive deformation
creating difficulty/singularity in solving the
structural analysis problem.

• A strategy to circumvent this problem is needed.
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Analysis Problem Size Reduction Technique

Identify void elements

Identify and restrain “prime” nodes
(those surrounded by void elements).

Identify and temporarily remove
“prime” elements (those surrounded only

by prime nodes).
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Test Problem #1 for Design of Sparse
Buckling Sensitive Structure.

• Design optimum sparse, elastic structure in the circular
domain to carry the design load back to fixed, rigid walls.

F F
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Old Q4/U Design Solutions to Circle Problem

• Generalized compliance objective function w/ spatial
filtering
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New Q4/Q4 Solutions to Circle Test Problem:

(a) Mesh used in analysis/design

(b) Design solution [20% material, option #1]
(c ) Deformed shape of (b)

(d) Design solution [5% material, option #1]
(e) Deformed shape of (d)

(f) Design solution [5% material, option #2]
(g) Deformed shape of (f)
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Fix-end Beam Problem

Option #1:
(a) Mesh, restraints, load case
(b) Design solution
(c) Design at onset of instability

Option #2:
(d) Mesh, restraints, load case
(e) Design solution
(f) Buckling mode (local)



24

Sparse, Long Span Canyon Bridge Concept Design Problem:
• span = 1000m; max height = 400m;
• design can occupy only 10% of envelope volume
• 16000 elements, 16281 design variables used.

Problem description

minimizing linear elastic compliance maximizing the minimum buckling load
37 104.9λ;105.6 ⋅=⋅=Π

17 103.8λ;103.2 ⋅=⋅=Π
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Design of Long-Span Over-Deck Bridge

Design to minimize elastic
compliance

2102.3;65.1 ⋅==Π λ

Design to maximize minimum
linearized buckling eigenvalue

4105.1;20.8 ⋅==Π λ
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Summary and Conclusions

• For continuum structural topology optimization methods to be useful
in concept design of large-scale civil structures, they must be able to
detect potential buckling instabilities.

• modeling of sparse structures at high mesh refinement.

• solution of structural analysis problems with geometric
nonlinearity.

• The proposed formulations are promising for concept design of stable,
sparse structural systems.


