Comparison of Continuum and Ground Structure Topology Optimization Methods for Concept Design of Structures

Fatma Y. Kocer, Ph.D Colby C. Swan, Assoc. Professor Jasbir S. Arora, Professor

Civil & Environmental Engineering
The University of Iowa
Iowa City, Iowa USA

ASCE Structures Congress April 19–21, 1999 New Orleans, LA

FACT:

• Techniques for both continuum and discrete groundstructure topology optimization have been actively investigated over the past two decades.

QUESTIONS:

- Is either method clearly superior to the other for design of large—scale civil engineering structures?
- What are the relative strengths/weaknesses of the two approaches?

Presentation Overview

- Brief summary of continuum and discrete formulations.
- Comparative solutions of a truss design problem.
- Observations and additional issues.
- Conclusions

A. Brief Summary of Continuum Topology Optimization

 General material arrangements described with distributed parameters (volume fractions, micro-structure) throughout the spatial domain. For example:

b=
$$\{\phi_1, \phi_2, ..., \phi_N\}$$
 the design vector

- Structure is modeled/analyzed as a continuum. Analysis models can therefore be large and expensive.
- Wide variety of possible performance objectives/constraints
- Due to continuity and number of design variables, gradient based optimization methods are used.
- The optimization problem is typically non-convex with many local optima.

Samples of Continuum Formulations

Treatment of "Grey" Elements Containing Material Mixtures

Elastic Compliance Minimization Problems

Example: For a linear, elastic structural system:

min
$$\Pi(b)$$
 subject to: $r(b,u) = 0;$ $<\phi_A>-C_A \le 0.$

Optimization problem is solved using SLP.

There are a wide variety of alternative elastic/inelastic problem formulations.

Characteristics of Continuum Topology Solutions

Short Cantilever Beam Design Problem

a) $L_1 = 90$; $L_2 = 70$; $F = 10^3$ $E_{\text{solid}} = 7x10^9$; v = 0.333

Voigt solution; $\Delta_m = 0.05$; $b^0 = 1.0$; $\Pi = 2.07 \times 10^{-3}$

C) Voigt solution; $\Delta_{\rm m} = 0.05$; $b^0 = 0.3$; $\Pi = 2.07 \times 10^{-3}$

d) Reuss solution; $\Delta_m = 0.05$; $b^0 = 1.0$; $\Pi = 3.16 \times 10^{-3}$

e) Reuss solution; $\Delta_m = 0.05$; $b^0 = 0.3$; $\Pi = 1.17 \times 10^{-2}$

B. Discrete Ground-Structure Formulation

- Discretize structural domain into a finite spatial distribution of nodes.
- Connect all nodes using truss members.

• Retain only the most vital members to optimize with respect to prescribed loadings and performance criteria.

Typical Elastic Design Problem Formulation

min
$$\sum_{i} (\rho AL)_{i}$$
 such that:

1)
$$r(b,u) = 0$$
; (equilibrium)

2)
$$\frac{\Pi}{\Pi}$$
 $-1 \le 0$; (compliance)

3)
$$\frac{|\sigma|}{\sigma}$$
 $-1 \le 0$; (stress constraints)

4)
$$\frac{-\mathbf{P}}{\mathbf{P}_{cr}}$$
 - 1 \le 0; (local buckling constraints)

5)
$$\frac{-\text{NEL}}{\text{NEL}}$$
 - 1 \leq 0; (member count constraint)

- Design variables are truss member section properties.
 - Typically area, with moment of inertia;
- Problems are solved using genetic algorithms
 - Require no design gradients;
 - Can, in principle, achieve global optimum;
 - Used SAGA software (Arora and Wang, 1996);
 - Used fitness function of Kocer (1998).
- Constraints on problem size:
 - As number of truss members and discrete design variable values increases, number of design possibilities quickly -> ∞.
 - Consequently, only problems with coarse node distributions and few sectional possibilities can presently be solved.

C. Comparison of Methods on a Design Problem Simply supported, 20' x 5' truss.

Continuum Problem

0.50 kips/inch

Discrete Problem

D. Comparison of solutions:

- Computational expense
 - continuum: 2 cpu-hours on SGI PowerChallenge (single analysis cost significant, but few design iterations required)
 - discrete : 1.5cpu-hours on HP-715
 (single analysis cost trivial, but many analyses required)
- Design space (structural possibilities)
 - continuum clearly allows "many" more arrangements of members than discrete
- Other Considerations:
 - discrete allows modeling of cross-sections;
 - continuum designs tend to be "unrealistically heavy" due to continuum modeling.

E. Conclusions

- 1) Discrete methods seem more naturally suited to sparse civil structures using beam/truss type structural members.
- 2) There are barriers to solving large 3D structural concept design problems with both approaches:

• continuum: analysis cost

• discrete : excessive design

possibilities