Poroelastic Modeling of Fluid Flow at the Haversian and Lacunar Scales

Colby C. Swan, Ph.D, Associate Professor, Civil Eng., UI Roderic S. Lakes, Ph.D, Professor, Eng. Mech., UWM Richard A. Brand, M.D. Professor, Ortho. Surg., UI

> 2nd Workshop on Fluid Flow in Bone CCNY, New York 20 September 2000

Orthotropic Poroelastic Constitutive Model for Cortical Bone on Multiple Length Scales (Biot, 1956, 1957, 1962)

Bone Permeabilities on Different Length Scales

Haversian/Osteonal Scale [Rouhana *et al*, 1980]

Lacunar/Canalicular Scale [Cowin *et al*, 1998, 1999]

 $k_{longitudinal} = 5 * 10^{-17} \text{ m}^2$ $k_{transverse} = 5 * 10^{-19} \text{ m}^2$

- σ values denote total stresses:
- ε values denote matrix strains:
- **p**_f denotes fluid pressure; ζ denotes change of fluid content;

All constants in this poro–elastic model can be determined from micromechanical analysis.

The model predicts larger fluid pressures under transverse loadings.

UNIT CELL MODELING ASSUMPTIONS

- Bone matrix is homogeneous, isotropic, elastic (E = 12 GPa, v = 0.38). (Lamellar structure neglected)
- Fluid is elastic, with no shear viscosity on microscale (K = 2.1 GPa).
- The bone is fully saturated.
- Canal matrix in unit cell denotes:
 - Haversian canal at osteonal scale;
 - canaliculus at lacunar scale;

UNIT CELL MODELLING RESULTS

4% fluid-filled porosity

- All parameters in the poroelastic model are computed.
- Physical observation:
 - Loading along longitudinal canal axis generates "small" fluid pressures.
 - Loading transversely to canal axis generates larger fluid pressures.

CORTICAL BONE SPECIMEN

Experiments:

- Dynamic bending/torsion excitation.
 - Measure viscoelastic damping characteristic tan(δ).
- Air Dry and Saturated

Analysis:

- Pressure relaxation under step-loading.
- Compute viscoelastic damping characteristic tan(δ).
- Fully Saturated Specimen

Computed Haversian Pressure Relaxation Behaviors

Computed Viscoelastic tan(δ) Behaviors Associated with Fluid Flow in Haversian System.

Shear-Induced Fluid Flow at Lacunar/Canalicular Scale

Applied Loading is 1% Shear Strain

Bone matrix is poro–elastic, with anisotropy due to canaliculi.

Induced fluid pressures in the canaliculi dissipate on the order microseconds.

Space/Time Fluid Pressure Distributions in Lacunar Unit Cell

FINDINGS:

- The Haversian and Volksman canals function as freely draining conduits under mechanical excitation applied well below 1 MHz.
- On the lacunar scale, load-induced fluid pressures in canaliculi relax quickly [O(1 – 100µs)] into lacunae.
- Fluid pressure relaxation frequencies on both the whole-bone and the lacunar length scales are on the order of 1–10 MHz. These are much larger than what are thought to the physiologically meaningful frequencies (.1 Hz – 1 kHz).
- Our extensive experimental measurements of viscoelastic energy dissipation in cortical bone show no evidence of a Debye peak associated with pressure-driven fluid flow.