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Abstract—Computational homogenization is demonstrated as a potent analysis tool that can be used
directly to predict the property-structure relationships of many existing classes of composites, and
indirectly to design the topological macrostructure of new generations of composites so as to
optimize their mechanical properties. This paper lays out the homogenization analysis problem for
general classes of inelastic mechanical composites. The analysis techniques presented are logically
divided into stress- and strain-controlled methods, both of which are formulated for periodic composites
in a finite element setting. A well-recognized issue with computational homogenization is that
for three-dimensional structures associated computing costs escalate rapidly with mesh refinement,
thus providing a potential obstacle to usage of the method. To address this important issue, the
relative performance of alternative vector and parallel numerical algorithms that facilitate high speed
and efficiency with computing resources are compared on sample homogenization computations
of inelastic Byzantine masonry and modern graphite-epoxy. Building upon the established
homogenization analysis framework, a novel method for designing the topology of a composite’s
macrostructure is then formulated, implemented and demonstrated to achieve new material designs
with significantly enhanced mechanical performance properties. © 1997 Civil-Comp Ltd and Elsevier

Science Ltd.

1. INTRODUCTION

1.1. Optimal design of structures and materials

A review of the literature [1-9] shows that computer-
based design methods for structural optimization are
enjoying rapid development, in contrast to methods
for the computer-based optimal design of composite
materials. Nevertheless, using the concept of material
and structural hierarchy [10], a strong analogy exists
between the design of large scale civil/mechanical
structural systems and the macrostructural design
and layout of composite materials. (The term
“macrostructure” in this paper will denote the shape,
size and arrangement of the “homogeneous” material
phases throughout a composite medium, with
associated length scales typically ranging from
microns to centimeters.) While composite materials
systems are obviously designed at much smaller
length scales than civil/mechanical structures, their
design is similar in that they too require optimization
of both mechanical and thermal load transfer systems
subject to numerous constraints. Since the analogy
between structural and material design optimization
will be exploited here, it is proposed that the recent
history of computer-based structural design optimiz-
ation can be classified into three stages of
development:

stage |—general, automated methods are devel-
oped for analysis of a broad class of structures;
stage 2—analysis tools are employed inside of
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optimization programs to design structures in an
automated and optimized fashion;

stage 3—analysis, optimization, and design sensi-
tivity analysis tools are rapidly refined so that ever
broader classes of structures and structural behaviors
(including failure behaviors) can be efficiently
handled in the procedure.

Noting the spectrum of advanced applications
being undertaken, it can be argued that structural
optimization research is currently entering the
third stage of development where it is providing
a driving impetus for harnessing high-performance
computing methods in applied mechanics to drive
the cost of computerized analysis and design
ever downwards[11, 12]. In contrast, it appears
that computer-based design optimization of
composite materials is presently in the second stage
of development with relatively few efforts re-
ported [13—15] at integrated topological design
optimization of composite macrostructures. One
intent of this paper is to demonstrate that by
harnessing  homogenization-based  micro/macro
mechanics techniques with accepted structural
optimization methods, the design of composite
macrostructures is poised to make rapid, substantial
gains.

Computer-based geometric design and layout of
composite macrostructures can for simplicity be
subdivided into: (a) parametric design optimization
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methods; and (b) more general nonparametric
methods. In parametric design methods, the designer
from the outset decides what class of geometric
design will be achieved, and specifies a few
well-chosen parameters that characterize designs
from the chosen class. For example, in the tailoring
of laminated composites, one decides a priori upon a
fibrous laminated material macrostructure and in the
design process, the parameters (fiber spacing, lamina
thicknesses, ply orientations and stacking sequences)
are systematically chosen to optimize desired
mechanical and thermal material performance.
Tailoring has been developed extensively and applied
to a wide variety of fiber-reinforced laminated
composites by numerous investigators. Among the
many design issues that have been successfully
addressed in tailoring are damping [16], reduction of
residual thermal stresses by interphase design in metal
matrix composites [17] and enhancement of fatigue
strengths [18]. A limitation of parametric design
methods and tailoring in particular, however, is that
one always arrives in the end at the predetermined
class of composite (laminated) with its inherent
weaknesses (tendency toward delamination due to
lack of reinforcement between layers). It is further
recognized that the layup process suitable for
laminated composites is infeasible for many thick-
sectioned or irregular structural members.

In more general nonparametric methods, the
designer does not impose the class of the final design
configuration at the onset, but rather allows the
design method itself to solve for the configuration (or
topology) that will ultimately yield the best overall
performance of the system [3, 19]. Since this type of
method draws from a broader class of design
solutions compared to parametric methods, it is
ultimately capable of arriving at designs that yield
significantly higher performance. An example of such
nonparametric design methods is topological struc-
tural optimization which purchases its generality by
employing many more design variables than do
parametric methods.

1.2. Property—structure analysis of composites

When performing analysis and design of structures
built of composites, it is efficient to treat the
heterogeneous composite medium as a homogeneous
“effective medium” characterized by the “effective”
mechanical properties of the composite [20, 21].
Rigorous asymptotic analysis [22] shows this ap-
proximation to be valid when

%»1, i=1,23, )

where the /; represents the smaller of the body’s
dimensions or the length scale of variation in loads
applied to the body, and the A denotes the
characteristic dimensions of a representative volume
element of the composite or the unit cell. Assuming
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that the effective medium approximation can be
safely invoked, vital issues of longstanding interest to
applied mechanicians that must then be addressed in
solving analysis problems are: (1) determining
appropriate forms of effective medium constitutive
models for composites; and (2) parameter estimation
in such constitutive models for specific composites.

A related question to be taken up here is how to
design the composite to optimize targeted effective
mechanical properties. The bounds literature pro-
vides quantitative upper and lower limits on the
strengths [23-25], stiffnesses [26-28] and conduc-
tivities [26-28) that can be achieved when combining
discrete solids. Nevertheless, with the exception of a
few specialized composite design techniques [29, 30],
general design methods that tell how to spatially
arrange the solids in the composite’s macrostructure
to achieve the optimal properties remain to be
developed. This effort begins to address this issue.

At present, both analytical and computational
micro-/macro-mechanical methods are being actively
applied as complementary frameworks for character-
izing effective mechanical behaviors of composite
material systems. There exists a well-recognized
tradeoff between the frameworks—due to their
elegance and efficiency, analytical methods (if they
can be realistically applied) are preferred. Specific
analytical methods have been developed for
composites that are particulate reinforced [31],
aligned fiber reinforced [32,33], mesh and
weave reinforced [34, 35] and short chopped-fiber
reinforced [36], as examples. Since each method
generally imposes both geometric and constitutive
assumptions, each is of limited generality. When these
methods prove to be insufficient, researchers then
turn to more robust computational methods such as
Aboudi’s generalized method of cells [37] or compu-
tational homogenization. These methods are being
increasingly used for complex material systems, with
a wide breadth of published applications and a
capability to handle arbitrarily complex macrostruc-
tures with highly nonlinear internal phenomenology
such as general inelasticity [38, 39], nonlocal constitu-
tive behaviors, softening, strain localization and
micro-cracking [40], finite deformation {41] and phase
debonding [37].

A detailed comparison of the tradeoffs between
these approaches is beyond the scope of this work.
Instead, the intent of this paper is to present
computational homogenization as a potent and
general method for addressing both the analysis and
design issues mentioned above. While the method can
be applied to materials having arbitrary macrostruc-
tures, it is most efficient with periodic composites.
Among the materials in this category are many
fibrous (woven, meshed, stitched, or aligned), cellular
(honeycombed) and masonry composites. Using the
host of developments in nonlinear computational
solid mechanics over the past two decades, compu-
tational homogenization now has the capability to
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address for both analysis and design purposes most
of the nonlinear phenomena occurring within
composites. The remaining issue is cost.

Stated bluntly, computational homogenization of
three-dimensional inelastic composites is a challeng-
ing proposition that can require considerable
computing resources. The unit cell on which
computations are performed is generally three-
dimensional and the structure therein must be meshed
at moderate to high refinement to obtain accurate
results. Nonlinear inelastic material behaviors require
extensive effort at both the global level where finite
element force balance equations must be solved
iteratively, and at the local element and stress point
levels, where the nonlinear constitutive equations
must be solved repeatedly. Given the intensiveness of
the task, efficient algorithms must be employed to
minimize solution times and associated costs. While
many configurations are possible, it is here assumed
that the computations will be performed on shared
memory multi-CPU vector processing machines (e.g.
Cray, Convex, SGI, IBM, etc.).

1.3. Scope of paper

The sequence of this paper is as follows. In Section
2, the cell problem for homogenization of inelastic
periodic composites is formulated in a finite element
setting. To address the cost of homogenization
computations, attention is devoted in Section 3 to the
following algorithms for solving the associated
nonlinear algebraic finite element equations: New-
ton’s method with high-performance vector and
parallel equation solvers; Newton’s method with a
jacobi preconditioned conjugate gradient (JCG)
solver; and a memoriless BFGS algorithm. Vector-
parallel element level operations germane to all three
solution methods are discussed. The relative perform-
ance of the methods is demonstrated in Section 4 on
both elasto-plastic masonry and a graphite—epoxy
fibrous composite. Having established a general and
robust framework for analysis, the issue of designing
enhanced composites using a novel homogenization
based optimization framework is then presented and
demonstrated in Section 5.

2. HOMOGENIZATION OF PERIODIC MEDIA

2.1. Notation for periodic media

The heterogeneous body under consideration,
which could be a structure or a structural member,
for example, occupies a domain Q, in #° (Fig. 1) and
exhibits a periodic structure in that it consists of
repeating, identical subdomains each of which is a
unit cell Q = I1?_,]0, A,[, where 4, are the dimensions
of the cell and hence the ‘“wavelengths” of the
macrostructure [42]. A material point in the unde-
formed cell € is referenced by its local microscale
material coordinates X;, while the same point in the
larger domain Q, is referenced by its macroscale
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coordinates Y,. The microscale coordinates are
employed in solving the cell problem, while the
macroscale coordinates are used in solving global
boundary value problems (such as structural analysis
problems) with the effective medium approximation.

Our objective is to isolate a unit cell Q from the
larger body Q, and to numerically perform exper-
iments on it to obtain the effective mechanical
properties of the medium. The complexity lies in
getting the isolated unit cell Q; to respond as if it were
still embedded in Q, during the experiments. A
fundamental concept of great utility in this regard is
to require that the stress ¢ and strain ¢ fields in all
cells be identical under macroscopically uniform
loading as has been proposed in Refs [42-44]. These
fields are identical in all cells when they are A-periodic
such that

(Y, Y, Vi) =¢e(Y) + m, Yo+ mdy, Yi+ mAs),
(2a)

o(Y, Y2, Vi) =0(Y) + mi, Yo+ mhs, Y5 + m3ds),
(2b)

where n,, n,, n; are arbitrary integers. Periodicity of
one field typically assures periodicity of the other and
suggests that they admit additive decompositions
into uniform macroscopic contributions (S, E) and
oscillatory contributions (o*, ¢*) that vary over the
unit cell:

o(Y) =S + o*(Y),

Y)=E+e%(Y). (3

Fig. 1. Generation of the periodic domain €, by the unit
cells Q..
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The macroscopic quantities are defined as volume
averages over the unit cell such that

S=(a>=,l/J o dQ, E=(e)=%{ edQ. @)
Q, o,

Combining eqns (3) and (4) it is readily apparent that

o*> =0, (*)=0. )

Remark . Strictly speaking, eqn (4), is valid only
when the unit cell Q; contains no macroscopic holes
or voids. By assuming that the holes are filled with a
highly compliant material, however, eqn (4), can still
be used.

With regard to the constant-periodic decompo-
sition of the strain field, it can be shown by
integrating eqn (3), that the displacement field must
admit a linear-periodic decomposition. The respective
displacement fields on Q, and €, are thus

u(Y) = EY + u(Y), (6a)

u(X) = EX + u%.(X), (6b)
where rigid body contributions are eliminated by
proper restraints on the domain (Q, or ).

As with laboratory experiments, there are two
distinct procedures for performing numerical exper-
iments on unit cells: the stress- and strain-controlled
methods. The generic stress-controlled homogeniz-
ation problem involves imposing a history of S(t) on
the unit cell and computing the corresponding history
of E(t) while the strain-controlled homogenization
problem involves imposing a history of macroscopic
strain E(t) and computing the corresponding history
of macroscopic stress S(t). In the preceding, t plays
the role of a time-like loading parameter.

The objective is to perform these computations
using general purpose finite element computer codes.
Within the framework of displacement finite element
methods, the implementational details of the two
methods are quite different. However, since it is
advantageous to have both methods at one’s disposal
when analyzing and designing composites, both are
formulated below.

2.2. Stress-controlled method

2.2.1. Surface compatibility. Typically a paral-
lelepiped, the bounding surface of a unit cell Q; is
composed of three surface pairs I's=I ul,ul;
where the pth pair (p=1,2,3) is composed of
opposing faces, and thus satisfies I',, uI,, =TI, and
I, nT,, = {0}. Due to the periodicity of the domain
Q,, the surfaces comprising each pair must be
geometrically identical to each other in the sense of
size, shape, orientation and the macrostructure
showing on each surface. Such surface pairs are said
to be compatible.
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A criterion for the maintenance of surface
compatibility is briefly proposed, and to simplify
presentation, attention is focused on the pth pair of
a given unit cell. So that a one-to-one correspondence
can be drawn between material points on the
surface pairs, identical two-dimensional Lagrangian
parameterizations are assigned to each surface I,
and I',, of the pair in the undeformed state such that

Xi(¢,mel,, X« mel,, L nel-1,1}1 ()
A sufficient condition for the surfaces I',, and I,, to
be of identical shape, size, and spatial distribution in
all deformed states is that they remain identically
distributed with respect to the parameterizations
about their geometric centroids. Assuming that this
holds true in the undeformed state, it will also hold
true in the deformed state[38] if the following
displacement criterion is satisfied:

Wi(E, ) — 1) = (wi(&, 1) — 13), 8)
in which
J uf(¢, n)/J; dOJ
W= =12 (9a)
f 7140
(]
).
Ji= det[ﬁ], i=1,2. 9b)

As an example, and to make this point very clear,
a two-dimensional unit cell of masonry which
undergoes a uniaxial stress test along the vertical axis
is shown below in Fig. 2. Figure 2b shows a state of
incompatible deformation in that eqn (8) is not
satisfied on the boundaries; in contrast, Fig. 2c shows
a state of compatible deformation in that eqn (8) is
uniformly satisfied on the boundaries.

For numerical implementations, it is useful to
define the residuals of this criterion, eqn (8), as
incompatible displacement fields b”' and b” over the
respective surfaces I',, and I, as

b (&, n)=(uf(¢, ) — &) — (¥, n) — @), (10a)

b7 (&, n)=a(, n) — @) — @i, n) — &). (10b)
The criterion for surface compatibility is thus
satisfied for a given surface pair if the incompatible
displacement fields vanish at each point in the
parameter domain &, ne[—1, 1].

2.2.2. Finite element implementation. The strong
form of the stress-controlled homogenization
problem, taking account of surface compatibility
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Fig. 2. (a) Undeformed unit cell; (b) incompatibly deformed unit cell; and (c) compatibly deformed unit
cell of thickly jointed and staggered masonry undergoing a uniaxial stress test.

constraints, is written as follows. Find u: Q, — %#°
such that:

0, =0 in Q,, (11)
=0 onrl, forp=1,23, (12)
b =0 on T, forp=12,3. (13)
Subject to the boundary conditions:
u=g onl, forj=1723, (14)
noy;=h onlI,; forj=12,3, (15)

where I, and I', are, respectively, the mutually
exclusive portions of the boundary on which essential
and natural (traction) conditions are applied.
The applied surface tractions 4 have the de-
composition

hy=h + h*, (16)

in which
B =nS;, (17a)
h* = niok. (17b)

While 7% is known and prescribed on the boundaries,
h* is initially unknown and is obtained from the
compatibility constraints. Furthermore, essential
boundary conditions, eqn (14), are prescribed only to
restrain the rigid body modes of the unit cell.

Constitutive models relating stress and strain are
introduced in Sections 4 and 5.

The finite element formulation of this problem is
largely standard, the only unique aspect being that of
the surface compatibility constraints, eqns (12) and
(13). In the computations presented in Section 4, the
surface compatibility constraints are enforced by
using “‘compatible surface elements” which rely on a
penalty function implementation. Implementational
details of the compatible surface elements have been
prescribed at length in Ref. [38] and will not be
discussed here. As implemented, these elements are
completely modular.

2.3. Strain-controlled method

In strain-controlled homogenization compu-
tations, a linear displacement field (EX) arising from
an applied macroscopic strain E is imposed on the
unit cell Q,, and a variational problem is solved for
the periodic part u¥.. In the absence of body forces
the variational form of equilibrium is written as

j ,.6u,dQ = 0. (18)
Qs

Recalling eqn (6b), the total displacement field on €,
possesses the decomposition

u = EX + u¥,, (19)
in which the first term on the right side is

fully prescribed, and the periodic part is that which
remains to be determined. Hence the variation
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of eqn (19) du is purely periodic, and the variational
form, eqn (18), reduces to

J g:*(0u) dQ = J‘ o"-oudrl. (20)
o, r

If the right side of this expression is interpreted as the
contribution of tractions on the exterior of the unit
cell, then it must vanish due to the periodicity of ¢
and du. Thus the final weak form to be implemented
is written

J o(u):e*(ou) dQ = 0. 21)

Applying a Galerkin finite element implemen-
tation, the mesh approximations to éu and u are

wou =EX+ 3 daNsX) + 5 geNe(X), (22a)
B=1 E=1

Su—ou' = 3 caNo(X).

A=1

(22b)

Above, the N,, N, N are standard nodal shape
functions satisfying the usual requirements of linear
independence and continuity while » denotes the
number of nodes in the mesh and n, the nodes at
which u; is prescribed. As for the stress-controlled
problem, essential boundary conditions are pre-
scribed only to restrain the rigid body modes of the
unit cell. Implementing these forms in eqn (21) and
simplifying gives the FEM nodal force balance
equations:

ry= J. Biow)dQ =0, Ae{n—n}, (23)
o,

in which B, are nodal strain displacement matrices
and o(u") is the stress field as a function of the total
displacement field.

In keeping with standard solution techniques for
nonlinear finite element equations, eqn (23) is solved
incrementally. Specifically, a linear-periodic displace-
ment predictor—corrector technique is applied in
which the predictor is the linear part of the
displacement field E(z, . )X, and subsequent correc-
tors to the displacement field are periodic. At the
(n + 1)th time or load step, one has from the previous
step the equilibrium nodal displacement field d" as
well as the stress and internal state variable fields. The
displacement predictor d at the 4th nodal point in the
mesh discretization for the (n + 1)th step is simply

a' =d) + [E(z..1) — E(1.)]Xa4. (24)

In keeping with the displacement predictor, the initial
nodal residual forces are

Fi= J Blo (i) dQ. (25)
Q,

In all subsequent iterations to obtain nodal force
balance for the given load step, corrections to the
displacement field are periodic. Hence the displace-
ment field satisfies the linear-periodic decomposition
since it is composed of a sequence of linear prediction
updates and a sequence of periodic corrector updates.

In practice, periodicity of the correction displace-
ment fields is effectively achieved by a nodal
enslavement procedure in which corresponding nodes
on opposite faces of the unit cell € share the
same equation numbers. Thus, in a finite element
setting, the only nonstandard operations required in
strain-controlled homogenization computations are
those associated with the linear displacement field
predictor.

Remark. In the meshing of the unit cell Q, it is
assumed that a one-to-one correspondence exists
between nodes on opposing faces of the unit cell.

3. SOLUTION METHODS

In the past two decades much work has been done
on solution algorithms for large scale finite element
systems, to take advantage of vector and parallel
computing capabilities. Among the many considered
have been domain decomposition methods [45, 46],
parallel direct equation solvers([l11,12,47], and
preconditioning techniques for scalable iterative
equation solvers. In this section, the usage of high
performance vector and parallel equation solvers
and scalable iterative equation solving algorithms
on homogenization of inelastic composites is
investigated.

Due to their reduced memory requirements and
ease of parallelization on most computing architec-
tures, iterative equation solving methods such as
preconditioned conjugate gradient (PCG) methods
and memoriless quasi-Newton methods that have
good performance characteristics have been highly
sought after. The remaining difficulty with such
methods today lies in finding reliable preconditioning
methods that do not compromise the inherent
benefits of iterative equation solvers. Their reduced
memory requirements and ease of parallelization
makes the usage of iterative solution methods
potentially very attractive in homogenization compu-
tations.

High-performance equation solvers have also been
under intense development and now show impressive
performance, especially on vector and parallel
machines. The equation solvers are particularly
effective on shared memory multi-processing systems



Analysis and design of composites

that have large RAM (random access memory) or
SSD (solid state disk) capacities.

In this section, we present three algorithms for
solving nonlinear finite element homogenization
equations: Newton’s method with high performance
equation solvers; Newton’s method with a JCG
solver; and a memoriless BFGS equation solving
algorithm. Each of the three algorithms which are
applied in Section 4 require varying allotments of
computational effort at both the global level and at
the element level. To achieve optimal performance
across all methods, both global algorithms and local
element algorithms must be optimized. Optimization
of element operations is emphasized in this section.

3.1. Newton's method

It is recalled that the system of nonlinear global
force-balance equations to be solved for both stress-
and strain-controlled homogenization computations
has the form

r(d) =0, (26)
where d is the field of nodal displacements. For a
fixed load or time step, the employment of Newton'’s
method in tandem with a line search yields a recursive
sequence of the global displacement vectors d, . | that
eventually solves eqn (26). The sequence to update
the global displacement vector at the (n + 1)th load
or time step is shown in Box 1.

In Box 1, K is the global tangent stiffness matrix
and « is the search parameter chosen to satisfy the
standard line search criterion [§{r**'| < STOL [48],
in which STOL is a tolerance parameter controlling
the accuracy of the search. In the linear solving phase,
eqn (27), K can be updated each iteration (pure
Newton) or updated only periodically (modified
Newton). Within the context of a global Newton
algorithm, numerous options are available to
complete the linear solving operation (27). The
options considered are direct solution (noniterative)

with high performance equation solvers and iterative
JCG solution.

Predictor phase
k=0
d: +1 = &" +1

form v}, (di. )

: counter initialization
: displacement predictor
: initial residual.

Corrector phase
while (||r} .|| > RTOL),

K& = —rfi_,  : linear solving phase Q27
| : line search (28)
&1l =d, + p«: displacement update (29)

form r I i(di2|)
k=k+1
end-while.

. residual update
: counter update

609

3.1.1. Direct equation solvers. With  direct
equation solving methods, the global tangent stiffness
matrix is formed and stored in either a skyline, profile
or sparse format. Despite the efficiency of these
formats, the memory required for large three-dimen-
sional problems can still be problematic. Neverthe-
less, the speed of direct high-performance solvers
makes their usage in finite element applications very
promising [47). The parallel and vector equation
solvers of Storaasli et al/. using skyline [11] and
profile [12] Cholesky factorization have been im-
plemented and used in this effort. They have been
demonstrated to have attainable performances
well into the GFLOP range (billions of floating point
operations per wall clock second) when run on
multi-processor Cray machines. Because it uses
“saxpy” operations (s = x +y), the profile algor-
ithm is roughly twice as fast on Cray machines as the
skyline algorithm which employs vector unrolling of
dot products. On the other hand, the memory
required by the profile solver is generally greater
(0-200%) than that required by the skyline solver.

3.1.2. JCG solver. An alternative to using high
performance equation direct equation solvers in step
(27) of the global Newton algorithm is to use a
conjugate gradient method. Here, the JCG algorithm
presented by Hughes er al. [49] is employed because
of its relative simplicity and good performance
characteristics. (A competing EBE preconditioner of
marginally superior performance was also presented
in Ref. [49].) The JCG method treats eqn (27) as the
generic linear algebra problem Ax = b in which A is
assumed to be symmetric and positive definite. The
JCG algorithm for solving this generic problem is
shown in Box 2.

Step 1. initialize

m=0, X,=0, sn=b,
gn=12n=B"'s,.
Step 2: line search and updates

Sm  Z;m

T (30)
R 3n
S it = Sy — U A (32)
Step 3: if ISmii | < O0lISoll, return

Step 4: update conjugate search direction
Znv1 =B lsu, (33)
pomtepritees e
ot =Zn+1 + Pur, (35)

m=m+ 1.

Go to Step 2.

Box 1. Global Newton solving algorithm.

Box 2. JCG algorithm to solve Ax =b.
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The advantage of this JCG algorithm is that the
global stiffness matrix K (or A) need not be formed
or factorized. Operations in Box 2 involving the
product Ag [eqns (30) and (32)] are performed not at
global level, but rather at the element level by storing
and utilizing element contributions to A. The
memory required to store all element contributions to
A is usually substantially less than storing the
assembled A.

The preconditioner B is here chosen as diag{K(d))].
The rate of convergence in the energy norm
1% |4 = (X, - AX,,)'? is bounded [49, 50]:

Cc-1
“xm+l — X ”A < (%)“xm - X“A,

N
where C is the condition number:
C(B~'A) = max(7,)/min(Z,),

in which the % are the eigenvalues of B-'A [51]. To
hasten the rate of convergence, the following
behavior in the preconditioner is sought:
C(B'A)->1.

3.2. Memoriless quasi-Newton algorithm

A potentially viable alternative to the Newton
algorithm is Shanno’s memoriless BFGS algor-
ithm [52], which follows directly from the common
BFGS solution method [53, 54]. Rather than using
the Newton sequence of Box 1 to solve the global
force balance eqn (26), the quasi-Newton sequence is
used:

O = —ﬂx+|}’k» (36)
P« = 4. s (37)
dii)=di + ps. (38)

Equation (36) is the so-called quasi-Newton equation
in which

Y=y — Ik, (39)
and in which A denotes an approximation to the true
inverse Jacobian matrix H =K~'. The recursive

BFGS formula for a rank-two update of the inverse
Jacobian matrix is [54]:

yiHy\ [ pip
+ T Ty
PrYi Pr Y«

_ py He + Hi YePi
Pi Y ’

m”=m+@

(40)

If the BFGS update of H retains no memory of the
previous iterate, then the approximation Hi., is

obtained from an unchanging matrix Z rather than
the previous iterate H, . Replacing H, by Z in eqn (40)
yields Shanno’s memoriless BFGS update formula:

T T
Ho.=Z+ <1 +yAT—Zyk><@)
PeYe /\PrY«

_ Bz + ZykpZ’ @

P Y«
where Z is preferably a diagonal matrix to minimize
the storage and computation required of the
algorithm. While Shanno [52] suggested Z =1, we
here employ the inverted diagonal entries of the
global Jacobian matrix (e.g. Z = B~' = [diag K]™").
Utilizing eqn (41) in the search direction update eqn
(36) yields

.
o= —Zr,\ + (%)ZW

_Kl

YaZye \(Pitesr)  YiZris,
4+ — . (42
Py )( PLYs oy, e @)

Remark. If an exact line search is performed, then
terms containing piri . in eqn (42) vanish. In this
case, the update is identical to that produced in the
JCG algorithm. Thus this method is essentially a JCG
algorithm taking account of inaccuracies in the line
search. Unlike the JCG algorithm, however, this
algorithm does not assume an underlying quadratic
objective function. Hence the line search and force
updates are nontrivial and require substantially more
effort. The advantage, however, is that the element
contributions to K are not required and consequently
this method requires substantially less memory than
even the JCG algorithm presented which does store
the element contributions to K. The reduced memory
requirements are demonstrated in Section 4. As with
the JCG algorithm, the rate of convergence with this
algorithm is governed by the effectiveness of the
preconditioning matrix B.

3.3. Vector—parallel element operations

Depending on the global algorithm employed, a
sizable fraction of effort expended in nonlinear
homogenization computations can and often is
devoted to global line searching. (The fraction is
largest with the memoriless BFGS algorithm and
smallest with the Newton schemes.) During global
line searching, nearly all operations are devoted to
repeatedly forming the global residual vector r, the
assembly of which is intensive in element level
operations. Thus to achieve good performance, while
reducing the expense of homogenization compu-
tations, element level operations must be optimized to
take full advantage of the hardware available in the
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computing environment. Accordingly vectorization
and parallelization of element operations for
three-dimensional trilinear continuum elements with
general nonlinear material behaviors is considered
here.

On vector—parallel machines, vectorization [55]
allows for efficient usage of a given CPU and can thus
substantially reduce computing costs. Paralleliza-
tion [56] follows vectorization and its primary
advantage is that it reduces throughput time. The
FORTRAN code employed in this study has been
optimized on Cray machines; the same basic
principles apply as well to other vector—parallel
machines and even to many workstation hardwares
which now emulate vector—parallel machines.

Operations at the element level are divided between
formation of the element matrices (shape functions
N, strain displacement matrices B, element stiffness
matrices k., and element force vectors r.) and solving
nonlinear constitutive equations at each integration
point. To provide a framework for this discussion,
the operations required to form the global internal
force vector for a group of eight-noded trilinear
hexahedral continuum elements is provided in Box 3
through a sequence of generic subroutine calls.

do (/ = 1, numel, 8! process eight elements at a time
call htl-lcoord ! localize coordinates X

call htl-cshgg compute shape functions N
call htl-cb form strain-displ. matrices B
call htl-disp localize displacement d

!
'
1
!
call htl-strain ! computes strains ¢ = Bd
!
!
!

call eoslib update stresses 0 = 6(¢)

call htl-btsig element force r. = o B'o dQ

call addrhs assemble global force vector
enddo

L

Box 3. Operations for eight-node hexahedral continuum
element.

To achieve the highest possible computational
speed (floating point operations per CPU-second) in
element operations it is desirable to have both the
formation of element matrices and the solution of
constitutive equations vectorized. In the htl-prefixed
routines of Box 3, the code processes eight elements
at a time, and thus 64 stress points at a time,
assuming that eight-point quadrature is used to
integrate each element. (Note that on vector Crays
each CPU is equipped with 64 vector registers, hence
the appearance of this number. The restarting of
vector pipelines is minimized by breaking loops up
into integer multiples of 64 iterations, where loop
“iterations” means the number of passes through a
loop.) While the vectorization of most element
operations is quite straightforward, vectorization of
the constitutive models to process 64 stress points
simultaneously is much less so.

The authors’ experience to date in vectorizing
constitutive model routines has been limited to single
surface plasticity and viscoplasticity models which

use operator-splitting predictor—corrector integration
algorithms. For the fiber composite homogenization
computations in Section 4 a vectorized J-—2
plasticity model is employed; computing experience
with a vectorized anisotropic quadratic viscoplastic-
ity model was reported elsewhere [20, 21]. A vectoriz-
able integration algorithm (processing NSTRESS
stress points at a time) for a general single-surface
plasticity model is provided below in Box 4. The first
and third loops of Box 4, in which all of the actual
work is done, are vectorizable.

input parameters: NSTRESS, FTOL

I=0, ncon=0
while (/ < NSTRESS) ! check yield criterion
I=1+1

form elastic predictors o', q
if (fi(o!', qF) < FTOL) then ! point is elastic
icon; = 1, idm = 0, ncon = ncon + 1
else
icon; =0, idm =1
endif
endwhile
if(ncon = NSTRESS) return ! all points elastic
while (ncon < NSTRESS)
while(/ < NSTRESS)
I=1+1
if (idm; =1 and icon; = 0) then
perform return map iteration—f;
if (/| < FTOL)

icom = 1, ncon = ncon + 1
perform final update of ¢/, q
endif
endif
endwhile
endwhile
return

Box 4. Vectorized stress update for single-surface
plasticity.

Optimal performance is achieved in the algorithm
if load-balancing is achieved over the vectorized loop
iterations. Practically, this occurs if the stress state at
each quadrature point is either elastic or plastic.
When all points are plastic, even better performance
can be realized if roughly the same number of
iterations are required to achieve convergence in the
return-mapping for all points. Thus stress points
which converge early do not have to wait long for the
remainder to converge.

While single surface plasticity models are rather
easy to vectorize, since a particular stress point has
only one of two possibilities: elastic, or plastic, where
plastic involves only a single active surface,
vectorized implementations of intersecting multiple
surface plasticity models as presented by Simo et
al. [57) would be much more difficult to achieve since
each stress point would have a larger number of
possibilities: elastic, or plastic, where plastic could
involve an indeterminate combination of active
surfaces at a given time. The masonry homogeniz-
ation computations of Section 4 involve a two-surface
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(b)

Fig. 3. (a) Undeformed unit cell; and (b) deformed unit cell of masonry following stress-controlled Si3
shear test (deformation magnification = 46.5).

plasticity model of this type which is difficult to
vectorize.

4. SAMPLE COMPUTATIONS

In the following subsections, sample analysis
computations on inelastic composites are performed
to present a rough gauge on the absolute costs
associated with the analysis method, and to assess the
relative performance of the solution algorithms
discussed. The homogenization techniques presented
are general enough to accommodate broad classes of
constitutive models including both hardening and
softening behaviors. For brittle, softening behaviors,
however, special precautions must be taken to avoid
mesh-dependency in results and to compensate for
loss of positive definiteness in the global tangent
operators. Since these precautions are beyond the
scope of the current effort, attention is restricted in
the following computations to usage of elastic—per-
fectly plastic constitutive models.

4.1. Elasto-plastic masonry

As part of an effort to assess the seismic worthiness
of the Hagia Sophia in Istanbul, Turkey (AD 535),
the limit strength properties of the structure’s
masonries were studied using computational hom-
ogenization. Macrostructure of the masonries were
observed from the structure, while the individual
brick and mortar mechanical properties were
estimated from the data of Penelis [58] who studied a
contemporaneous structure.

The macrostructure of the unit cell employed for
consideration here is characteristic of a thickly
Jointed brick masonry found in upper portions of the
Hagia Sophia, having brick dimensions /,, & and 4,
with aspect ratios /,/, = 2 and I,/l; = 2. The relative
thickness of all mortar joints ¢ is given by the ratio
t/ly = 0.25. In this study, the unit cell consists of a
single brick and its three encompassing mortar joints
in the X\, X> and X, directions. With the particular
meshing scheme employed, each mortar joint in the
cell had three elements through its thickness, in a
mesh containing 936 nodes and 672 continuum

elements (Fig. 3). Eight-node trilinear hexahedral
continuum elements were used with eight-point
gaussian quadrature and a mean-dilational B-bar
formulation [59]. Shear, compressive and tensile
stress-controlled loading tests were performed on the
cell measure its limit states in stress space.

The inelastic constitutive behavior of both the
brick and mortar phases was represented with
a two-surface elasto-plasticity model having a
Drucker-Prager failure envelope and a circular
tension cap (Fig. 4). The model was implemented
using a fully implicit backward Euler integration
algorithm along with consistent tangent operators.
Material and geometric parameters of the brick and
mortar, are summarized in Table 1.

The masonry computations were performed on a
2-CPU (R8000) SGI workstation with 192 Mb of
shared RAM. The global solution algorithm was the
modified Newton algorithm (Box 1) in conjunction
with a skyline equation solver [11]. Sloan’s nodal
reordering algorithm [60] was also used to mitigate
the storage requirements with these computations.
Compatible surface elements [38] were employed to
enforce periodicity. Naturally, as the limit state was
approached in each test, the macroscopic stress
increments were reduced. Results are summarized in
Table 2 and sample stress—strain plots for the effective
medium are shown in Fig. 5.

Alis]|
Failure Envelope

/ Tension Cap

A
=

P
Lo

I

Fig. 4. Two-surface plasticity model used for bricks and
mortar in homogenization computations.
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Table 1. Constitutive model parameters of brick and
mortar phases

Parameter Brick Mortar
A(GPa) 2.61 1.64
u(GPa) 1.12 1.09
x(MPa) 7.165 2.867

¢ (degrees) 5.711 7.711

4.2. Aligned fibrous composite

The wunit cell of a short, aligned graphite
fiber—clastomeric epoxy matrix composite is now
considered. The individual fibers have a diameter of
8 um and a length of 90 um. End-to-end spacing
between fibers was 10 um, while the closest lateral
spacing between fiber axes was 10 um. Both phases
were modeled as elastic—perfectly plastic with a von
Mises yield criterion; material property values for
both phases are shown in Table 3. The plasticity
model, which vectorized in accordance with Box 4,
was implemented using a fully implicit backward
Euler integration algorithm and consistent tangent
operators.

The fiber composite unit cell for this computation
(Fig. 6) comprised 5376 hexahedral continuum
elements, 6061 nodes and 16,126 unrestrained nodal
degrees of freedom, and was tested in a uniaxial strain
mode along the fiber’s long (X;) axis. The
strain-controlled test was performed in 40 load steps
(20 loading and 20 unloading). Figure 7 shows the
macroscopic  stress-strain loading/unloading re-
sponse of the composite. Using the three solution
algorithms presented in Section 4, the same
computation was performed on both a Cray C90
supercomputer, and on a 2-CPU RS8000 SGI
workstation. A summary of the costs of this
computation, and of the relative performance of the
alternative solution algorithms is presented in Table 4
which shows that if sufficient real memory is
available, Newton’s method with direct equation
solvers is much faster than the iterative solution
algorithms. While the iterative methods require much
less memory, they take considerably more CPU time.

5. TOPOLOGY DESIGN OF MACROSTRUCTURE

5.1. Distribution of materials

In preceding sections, computational homogeniz-
ation was applied to obtain response properties of
composites having fixed design configurations. In
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macrostructural topology optimization, the design of
the composite (the distribution and arrangement of
materials present) is systematically varied to improve
targeted response properties. A general method is
presented that can be used both to find optimal
material combinations (based on mechanical con-
siderations) and to find their topological arrange-
ment.

Once a FEM discretization of the starting unit cell
has been constructed and set of N candidate materials
selected that can feasibly go into the composite, a
system is required to describe the material combi-
nations and their spatial, geometric distribution. In
the proposed method, a vector of continuous, real
design variables be 2"+ ¥~'! contains this infor-
mation. (Advantages of the continuous, real design
variable approach over the alternative discrete integer
design variable method have been pointed out by
Strang and Kohn [61].) If, for example, the FEM
mesh of the unit cell contains NEL elements, the
design vector b has the definition

b= {b,b,..

<y be} (43)

where

bi={¢,, b ..., ¢, ) forie{l,2, ..., NEL}.

(44

That is, the full vector of design variables b is
comprised of NEL element level contributions, and
each element level contribution b; further consists
of N—1 material volume fraction contributions
{¢i,, bir, .. ., ¢i,_,} from the N candidate materials.
This allows each of the N candidate materials to be
arbitrarily distributed through the unit cell. To
illustrate, if in a given element #, ¢;, = 0, then material
1 is not present in this element, whereas if ¢;, = 1,
then the Nth material completely occupies the
element. Natural constraints upon the elemental

volume fractions are that

1l

N

¢ij=ls

J

for each ie{1,2,..., NEL} (45)

j
and

¢,;€[0,1] for je{l,2,..., N} (46)

Table 2. Summary of stress-controlled limit analysis homogenization of masonry

Limit analysis test Limit (MPa) Memory (Mw)! CPU (min)
Compressive Sy -7.39 2.71 31.74
Tensile Sy +2.52 2.71 22.69
Compressive Sy -7.35 271 33.05
Tensile S +2.51 271 29.27
Shear S 2.08 271 34.86

'A Mw denotes 10° words, where the word length is eight bytes.
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Fig. 5. Macroscopic stress-strain relations from: (a) stress-controlled tensile strength test; and (b)
stress-controlled compressive strength test on masonry.

Material cost constraints can optionally be imposed
upon the designed composite by specifying upper
limits on the global volume fraction of each candidate
phase:

{$p;>—C; <0, forjef{l,2,...,N}, (47)

where C, is the maximum permissible value of the
global volume fraction for the jth material phase in
the composite’s unit cell.

5.2. Constitutive mixing rules

Since each finite element of the unit cell model
contains N material volume fractions, a critical issue
is how these materials are combined to form element
level stress—strain relations. In single-phase structural
topology applications, the frequently addressed issue
is where to put the solid material and where to omit

Table 3. Constitutive model parameters of fiber and matrix

phases
Parameter Fiber Matrix
E(GPa) 260.0 0.690
v 0.35 0.350
Yy'(MPa) 35,000 30.00

Y, denotes von Mises yield stress taken to match nominal
compressive strengths of the phases.

it. For these applications mixing rules combining a
single solid phase and a void phase have proven
highly effective with the hardkill-softkill rule [2, 8]
and the structured porous solid mixing rule [19] being
quite popular. For topological design of composite
materials the problem is somewhat more complicated
in that mixing rules for N general elastic or inelastic
solid constituent phases are required. The two
classical mixing rules employed here (Fig. 8) satisfy
these requirements in that they can be applied to both
elastic and inelastic materials and yet are very simple
in that they assume no “‘microstructure” in the
mixture. (The objective of this work is to solve for
macrostructure at the unit cell length scale, not at the
element length scale.) The Voigt mixing rule assumes
that all constituent phases present at a point in space
share the same total strain ¢; accordingly, the total
stress at the point of interest is the weighted sum of
the partial stresses:

6X) = 3 daleX).

J=1

(48)

The alternative Reuss mixing rule assumes that all
constituent phases present at a point in space share
kthe same stress ¢; by this mixing rule, the total strain
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(a) (b

Fig. 6. (a) Undeformed unit cell; and (b) deformed unit cell
of graphite fiber composite following strain-controlled axial
E:; test (deformation magnification = 9.5).

€ at such a point is the weighted sum of the individual
strains:

I=N

eX) = Y ¢eloX)]

i=1

(49)

For inelastic constitutive material behaviors, the
constant Reuss mixing rule is somewhat more
cumbersome to implement numerically than the
constant strain rule. Details on a robust implemen-
tation of the Reuss mixing rule are provided in
Ref. [62].

Using simple energy arguments [37], it can be
shown that the Voigt and Reuss mixing rules provide,
respectively, upper and lower bounds on both the
strength and stiffness characteristics of the mixture.
Realizing that this is the case, the choice of which
mixing rule to use depends on the quantity being
optimized. When designing composite macrostruc-
ture to optimize effective stiffness and strength, the
compliant constant stress mixing rule works best; in
design of composite macrostructure to optimize
specific compliances, the stiff constant strain rule

gives better performance. For the overall optimiz-
ation method to give sound and meaningful physical
solutions, the resulting terminal macrostructure must
asymptotically aggregate into regions of distinct
material phases (that is, for example, asymptotic
black and white solutions should be obtained for
the two-material problem). In the limit where true
“black and white” terminal macrostructures are
achieved, the computed effective properties of the
composite in the terminal state are independent of the
mixing rule.

5.3. Design sensitivity

Having defined a numerical model of the
composite unit cell that includes mechanisms for
describing and varying material combinations, their
spatial distributions and constitutive mixing rules, the
remaining task is to specify objective functionals and
to perform the optimization computations. All
response functionals ¥ defined for the unit cell,
whatever combinations of {a,¢, S, E} they include,
can ultimately be expressed in terms of the
displacement field u(X, b) on &, and the design vector
b, that is ¥ = ¥[u(b), b]. Specific functionals that
target global stiffness and/or strength properties of
the composite are defined and the macrostructure in
the unit cell is then systematically varied by changing
b to minimize them.

In any gradient based [Ist order] optimization
algorithm [53], it is essential that the total design
gradient of the objective functionals be accurately
and efficiently computable. That is, we must be able
to compute

d¥(,u) ¥ ¥ diu
db b Guon (50)

While the first term in this variation is easy to
compute, the second term requires somewhat more
effort. For clarity and simplicity, the method is here
demonstrated on linear elastic composites. Treatment
of more general nonlinear inelastic behaviors is
treated in Ref. [63]. Given the restrictions imposed
here, the adjoint sensitivity method of Arora and
Cardosa [64] can be efficiently employed.

The adjoint sensitivity principle calls for introduc-
tion of an augmented Lagrangian as follows:

L(u*, b,u) = ¥(b,u) + W@, bu), (51)
in which

Wi, bu)= Y

Aein - ng}

(u)r,.

(52)

In these expressions, uj represents a field of
kinematically admissible nodal variational displace-
ments, hereafter called the adjoint displacement field,
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Fig. 7. Macroscopic stress—strain relations from Ej; axial strain test on fiber composite.

and r, is the nodal residual force vector for the
discretized cell problem, eqn (23). Global equilibrium
in the cell problem requires that r, = 0 VA e{n — n,}.
Hence for all admissible adjoint displacement fields
uw, W(uw, b,u)=0. Accordingly, it can be easily
shown that the total design variation () of W*
vanishes.

The fundamental concept in adjoint sensitivity
analysis 1s to select the adjoint displacement field u*
such that the displacement variation (§) of the
augmented Lagrangian vanishes for all possible
design configurations. That is,

. oY owr\.
5L‘=<E+ ” )ou=0. (53)

In general, 6L vanishes for all du if 6W*/du = — 0¥/
¢u. Substitutions of W* from eqn (52) into this
expression yields a linear system of algebraic
equations that can easily be solved for the adjoint
displacement field u®:

15

25 3
x10

Now taking the total design variation of the
augmented Lagrangian, eqn (51), one finds

3L = 3% + 6w

(2w, 2
“\db

+(u

¥ du

- T a
7 ab)éb + r"du

érdu or
a)T| Pt _
) |:5u ab " ab]‘""

(55a)

(55b)

The next to last term in eqn (55b) vanishes by the
state equation, since r = 0. Regrouping egqn (56) thus

gives

o=

o ow
cb b

o

or w1 O\ du
ﬁu"— _6_‘1’ (54) +(6u ) 6")dbéb’
du ~ Ou’
Table 4. Summary of strain-controlled computations on graphite—epoxy
Required CPU-hours CPU-hours
Solution method memory (SGI-R8000) (Cray C90)
Modified Newton with vectorized 21.15 Mw Insufficient memory 2.86
skyline solver. Factorizing
tangent every eight iterations.
Modified Newton with JCG 3.10 Mw 20.8 12.5'
solver. Reforming the tangent
every eight iteration.
Memoriless BFGS 1.49 Mw 26.4 15.8!

'Estimated based on relative peek speeds of the machines (SGI is 300 MFLOPS per CPU, while C90

is 500 MFLOPS per CPU).

(56)



Analysis and design of composites

Voigt (isostrain) Mixing Rule

K

. K,

Reuss (isostress) Mixing Rule

K K,

et

617

P

Voigt Rule ——\

Reuss Rule *

+— -t
Y 0.5 1.0

Phase 1 Volume Fraction, ¢,

Equivalent Stiffness of Mixture

Fig. 8. Schematic illustration of the mixing rules used at the element level in topology optimization. The
constant strain Voigt mixing rule provides an upper bound on stiffness, while the constant stress Reuss
mixing rule provides a lower bound on stiffness.

in which the second term on the right vanishes by
virtue of the specification of the adjoint displacement
field according to eqn (54). Given further that
W = 0, the desired displacement variation 3% can
finally be written in the convenient form

oY owr
Y =0L = I:-a'—b- + a—b’:|5b (57)
Since it involves only partial derivatives, this

expression for the design variations of the objective
function can be easily computed.

Remark. In the linear solving phase of the adjoint
sensitivity analysis, eqn (54), any of the direct or
iterative methods discussed in Section 3 can be used
to solve for w’. The expression dr/du in eqn (54)
represents the global tangent stiffness matrix. If a
direct solving algorithm is used for the FEM analysis,
then this matrix already exists in factored LU form.
In this case, solution of eqn (54) involves only a
back-substitution operation. For optimum efficiency
in sensitivity analysis, element level assembly of the
vectors ¢¥/¢u, d¥/Cb and ¢W*/db can be vectorized
and parallelized.

5.4, Hlustrative examples

The analysis software used in this effort is
FENDAC [65] in which the homogenization and
design sensitivity operations have been implemented,
while the design optimization software is IDE-
SIGN [66]. For the design problems that follow, an
implicit sequential quadratic programming (ISQP)
method using a limited memory BFGS constrained
optimization algorithm in tandem with line searching
was employed.

As presently constructed, many pultruded fiber
composites consist of aligned E-glass fibers embedded

in a resin epoxy thermosetting matrix. While such
composites feature excellent axial stiffness and
strength, their nonaxial properties suffer greatly in
comparison. For example, the aligned fiber com-
posites feature very modest transverse extensional
strengths and stiffness, and even lower transverse
shear stiffness and strengths. The problem of
increasing the transverse extensional and shear
stiffnesses of such composites while in no way
compromising their good aligned axial properties is
addressed in the following examples.

S.4.1. Transverse normal stiffness. Using realistic
stiffness properties for both the fiber (E-glass) and the
matrix (resin epoxy), the design method was applied
to improve the transverse normal stiffness of the
composite. For a realistic fiber volume fraction of 0.5,
the transverse Young’s modulus of the composite as
currently designed is 9.1 GPa [regular square-packing
of fibers assumed]. When the macrostructure of the
composite is redesigned to optimize the transverse
stiffness, the macrostructure shown in Fig. 9a is
achieved and yields a predicted transverse Young’s
modulus of 34.6 GPa, which is nearly a three-fold
improvement. This example indicates that alternative
reinforcing configurations should be considered
(other than aligned circular fibers) to improve
non-axial stiffnesses.

5.4.2. Transverse shear stiffness. Using the same
realistic elastic stiffness properties for both the fiber
(E-glass) and the matrix (resin epoxy), the design
method was subsequently applied to improve the
transverse shear stiffness of the composite. For a
realistic fiber volume fraction of 0.5, the transverse
shear modulus of the composite as currently designed
is 2.5GPa (same assumption of regular, square
packing invoked). When the macrostructure of the
composite is redesigned to optimize the transverse
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shear stiffness, the cellular macrostructure shown in
Fig. 9b is achieved and gives a predicted transverse
shear modulus of 9.1 GPa, which is roughly a 280%
improvement.

From these two simple examples, it should be
apparent that the proposed method is a very potent
tool in macrostructural design of composites to
achieve specific mechanical performance properties at
no additional material costs. If additional materials
had been considered in these examples (such as higher
performance fiber and matrix phases), then even
higher performance gains would have been demon-
strated.

An important question that remains to be
answered is how the effective material properties
predicted by the optimized material structures and
the FEM meshes used in the optimization process
(Fig. 9) compare with the properties that would be
predicted by more refined FEM meshes such as those
that would be used in production computations. To
answer this question, the topology shown in Fig. 9b
was “‘post-processed” and remeshed (Fig. 10a) and
then subjected to a pure macroscopic shear state
(Fig. 10b). The effective shear modulus predicted by
this computation is Ci22 = 10.6 GPa as compared to
the shear modulus G, = 9.1 GPa predicted by the
“mixture” mesh. Clearly, the post-processing in-
terpretation of the optimized topology is not exact,
and some variations of the predicted mechanical
properties are to be expected. A likely cause for at
least part of this discrepancy is that while the mesh
in Fig. 9b has a precise volume fraction for the glass
phase of 50%, the mesh shown in Fig. 10a has a glass
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volume fraction of 51.5%. This slight increase in the
glass fraction increases the shear modulus predicted
by the post-processed production model.

5.5. Parametric material design optimization

In the previous subsection, a framework was
established for nonparametric design optimization to
obtain macrostructural topologies that significantly
improve the mechanical performance of the com-
posite. Having achieved significantly improved
performance of the composite in the nonparametric
topology optimization phase, the topology can then
be refined in a secondary parametric shape optimiz-
ation phase using techniques similar to those used in
tailoring. For example, the optimized macrostruc-
tures shown in Fig. 9 can be parameterized as shown
in Fig. 11 and then iteratively optimized. With
each revision of the design parameters, the unit cell
can be automatically remeshed and its properties
predicted by computational homogenization. The
authors have yet to implement this second stage in the
design optimization process for composite macro-
structures.

6. CLOSURE

Accurate and efficient methods have been proposed
within the framework of the displacement finite
element method for solving the unit cell homogeniz-
ation problem for periodic composites. Using the
homogenization framework, a general new procedure
for designing the macrostructure of composites has
been proposed and demonstrated.
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Fig. 9. Unit cells of initial and optimized macro-structures of an aligned fibrous pultruded composite:
(a) a macrostructure designed to optimize Cnn with ¥ = E»; under applied Sz loading; (b) a
macrostructure designed to optimize Cyz2 with ¥ = E; under applied Si. loading.
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(a)

Fig. 10. Undeformed and deformed unit cells of remeshed and optimized cellular macrostructure for a

glass—epoxy composite in a state of pure elastic macroscopic shear. The black material is E-glass, and the

white material is resin epoxy. The computation shown predicts a shear modulus for the composite of
Ciai2 = 10.63GPa. (a) Undeformed unit cell; (b) deformed unit cell in pure macro shear.

(a)

-5

a0

Fig. 11. (a) Post-processed and parameterized layout of the unit cells achieved from topological

optimization which can be used in secondary parametric shape optimization. (b) Smoothed, periodic

cellular macrostructure with 50-50 glass and epoxy volume fractions resulting from the shear stiffness
optimal design.

The need for rapid and efficient methods of
analyzing nonlinear structural and material systems
has long been recognized; analysis and design of
composites as proposed here gives added impetus to
this drive.
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