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Abstract 
 

A control algorithm to manipulate the input 
actuation forces on hinge-free compliant 
mechanism models synthesized utilizing continuum 
topology optimization formulations is implemented 
and successfully tested in this work, such that the 
mechanisms  follow  their specified trajectories and 
nearby trajectories with high degree of accuracy 
even when confronted with different resistance 
forces. The validity of the proposed formulations is 
tested and demonstrated on number of practical 
problems involving finite deformation.  

 
 
1. INTRODUCTION 
 
While rigid-body mechanisms (Fig1.a) can be 

optimal in innumerable macroscopic mechanical 
systems, they are generally less suited for micro-
scale applications due to the fundamental difficulty 
of fabricating reliable hinged-joints on such small 
scales. One potential answer to this problem is to 
employ compliant mechanisms [1] in which force 
and motion are transmitted primarily via elastic 
deformation of the system.  The elastic deformation 
of compliant mechanisms can be either 
concentrated in flexible hinge regions (Fig. 1b) [2], 
or it can be more or less uniformly distributed 
throughout the mechanism (Fig. 1c)[3].  In the 
former case, an attempt is usually made to re-
design the hinged joints of rigid-body mechanisms 

as flexible hinges in such a way that the 
performance of the resulting compliant mechanism 
is roughly comparable to that of the rigid-body 
mechanism.  This is a nontrivial endeavor, however, 
as designing flexible hinges in a way that permits 
only rotation at the joint, and so that the material in 
the hinge is not overstressed or overstrained is very 
challenging.  For these reasons, compliant 
mechanism designs that feature distributed elastic 
deformation may be more designable and also more 
durable.   

 
 
 
 
 
 
 
 
 
 
 
 
 
Continuum structural topology design methods 

have in recent years been investigated quite 
actively in the design compliant mechanisms, 
beginning with the seminal work of Ananthasuresh 
et al [4].  Since continuum topology design 
methods solve for the layout of structural material 
in continuum structures and mechanical systems, it 
is somewhat ironic that when applied to design of 
compliant mechanisms, they have a tendency to 

Figure 1. Schematic drawing of generic mechanisms, a) 
pin-jointed rigid-link mechanism; b) pseudo-rigid link 
mechanism (compliant hinges substitute for pin-jointed 
hinges); and c) hinge-free distributed deformation 
compliant mechanism. 
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produce systems that function as pseudo-rigid-body 
mechanisms.  Such pseudo-rigid-body mechanisms 
generally feature de facto hinge regions, which are 
artifacts that behave as hinges.  Achieving 
compliant mechanism designs free of de facto 
hinges within a continuum topology optimization 
framework has been addressed previously where it 
has been observed that such designs generally 
function as distributed deformation compliant 
mechanisms.   

 
Since the material comprising compliant 

mechanisms will generally undergo finite strains, 
displacements, and rotations when the mechanism 
functions under normal design actuation forces, the 
analysis and design framework must be general 
enough to treat finite deformation effects.  One 
important class of applications among compliant 
mechanisms are so-called path-following 
mechanisms in which the output ports of the 
mechanisms follow a specified trajectory under the 
effect of a sequence of actuation (input) forces.  
Research on utilizing continuum topology 
optimization methods to achieve such path-
following compliant mechanisms is still in a state 
of relative infancy and only a small number of 
papers have been published toward this end (e.g. 
[5], [6].)  

 
A design and control methodology is introduced 

here to realize hinge-free compliant mechanism 
designs that can follow desired curvilinear paths 
with good precision even when working against 
varying workpiece resistances. In the approach, 
hinge-free compliant mechanism designs that have 
both sufficient flexibility and strong sensitivity of 
output port response to input port actuation forces 
are first obtained utilizing a particular continuum 
topology optimization formulation [7].  The 
optimal design process is then followed by 
application of a control algorithm ([8],[9]) to solve 
for sequences of actuation forces in response to 
which the mechanism will follow specified 
curvilinear trajectories when working against 
varying resistance forces.  The proposed control 
algorithm is implemented within the solution 
algorithm for finite deformation structural analysis 
of compliant mechanism designs.  This is followed 
by a number of practical examples to illustrate the 
validity of the proposed control algorithm.  

 

2.  ELEMENTS OF FORMULATION 
2.1 Structural Analysis Model 
 
Since the compliant mechanisms being modeled 

and designed undergo finite displacements, 
rotations, and strains the analysis framework 
should accommodate it.  Accordingly, the strong 
form of the nonlinear elliptic boundary value 

problem to be solved for the structural 
displacement field is as follows: 

 
Find 3]),0[(: ℜ×Ω aTSu , such that: 
 

0γρτ j0jij, =+     on SΩ ],,0[ Tt∈∀            (1a) 
 

     subject to the boundary conditions: 
 

(t)g(t)u jj =   on 
gjΓ  for ,1,2,3j =  T][0,t∈∀          (1b) 

(t)hτn jiji =  on 
hjΓ  for ,1,2,3j =   T][0,t∈∀         (1c)  

 
 Above, τ  denotes the Kirchhoff stress tensor field 
which is related to the Cauchy stress tensor σ  via 
the relation στ J= , where )det(F=J  and F  is the 
deformation gradient operator.  As is customary, it 
is assumed that the Lagrangian surface 

hjgj ΓΓΓ ∪=  
bounding the Lagrangian structural domain SΩ  
admits the decomposition { }∅=Γ∩Γ

jj hg
 for 3,2,1=j    

For a given mesh discretization of sΩ  whose 
complete set of nodes is denoted η, the subsequent 
design formulation is facilitated by introducing a 
subset of nodes ηh at which non-vanishing external 
forces are applied, and a subset of nodes ηg at 
which non-vanishing prescribed displacements are 
applied.  

  
The particular isotropic hyperelastic strain 

energy function E  used here is that of Ciarlet [10] 
wherein the volumetric )(U  and deviatoric )(W  
strain energy functions are assumed to be 
decoupled and of the forms: 

 
  )()()( θWJUE +=F                (2a) 

    ⎥⎦
⎤

⎢⎣
⎡ −−= )ln()1(

2
1

2
1)( 2 JJKJU                 (2b) 

]3)([
2
1

−= θtrW µ                                (2c) 

 
In the preceding expression, J  is again the 
determinant of F ; K  is a constant bulk modulus; 
µ  is a constant shear modulus; TFF=θ  is the left 
Cauchy-Green deformation tensor; and θθ (2/3)−= J  is 
its deviatoric part.  For this model, therefore, the 
Kirchhoff stress in a material τ  is thus related to 
deformation quantities as follows: 

 

θ
1τ

∂
∂

+′=
Wdev 2)(U JJ    (3) 

 
Using standard techniques, the virtual work 
equivalent of the original problem statement in 
Eqs.  (1) can be obtained in the following form:  
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∫∫ ∫ +=
hS S Γ

hjj
Ω Ω

Sjj0Sijij dΓδuhdΩδuγρdΩδετ     (4) 

 
In the expression above, the quantity on the left 
represents the internal virtual work intWδ , and that 
on the right, the external virtual work extWδ .   
 

Usage of a Galerkin formulation, in which the 
real and variational kinematic fields are expanded 
in terms of the same nodal basis functions, and 
discretization of the time domain into a finite 
number of discrete time points, leads to the 
following force balance equations at each 
unrestrained node A in the mesh as here at the 

thn )1( +  time step: 
 

0ffr =−= +++
A

1n
extA

1n
intA

1n )()(                       (5) 
where 

∫
Ω

+++ =
S

S1n
T

1n
AA

1n
int dΩ:)()( τBf            (6) 

∫ ∫
Ω Γ

+++ +=
S h

h1n
A

S1n
A

0
A

1n
ext dΓNdΩNρ)( hγf              (7) 

 
In (6), A

1n+B  represents the spatial infinitesimal 
nodal strain displacement matrix ))(N( AA

1n 1
xB s

xn+
∇=+

, 

and AN  denotes the nodal basis function for the thA  
node.  Under finite deformations, Eq. (5) represents 
a set of nonlinear algebraic equations that must be 
solved in an iterative fashion for the incremental 
displacement field nnn uuu −=∆ ++ 11)(  for each 
time step of the analysis problem.  When external 
forces applied to a structure are independent of its 
response, the derivative of the thi  residual force 
vector component at the thA  node with respect to 
the thj displacement vector component of the thB  
node is simply: 

 

∫ ∫
Ω Ω

Ω+Ω=
S S

Sil
B
kjk

A
jS

B
kljk

A
ji

AB
il dNNdBcB δτ ,,K    (8) 

where jkc  is the spatial elasticity tensor in 
condensed form. Assembly of this nodal stiffness 
operator for all unrestrained nodes A and B gives 
the structural tangent stiffness matrix. 

 
To solve for nonlinear deflection responses of 

hyperelastic structures, Newton iterations (Fig. 2) 
are usually performed at each load step of the 
analysis problem.  These involve solving for the set 
of nodal displacements  1+nu  that satisfy the force-
balance equilibrium condition of Eq. (5).   

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2  Continuum Topology Optimization 
 
In continuum topology optimization, one 

frequently solves for the spatial distribution of a 
fixed volume of structural material in SΩ  such that 
the desired performance characteristics of the 
structure are optimized.   In the current framework, 
this is achieved by using the same 0C  bi-linear 
nodal basis functions of the structural analysis 
problem to interpolate nodal volumetric densities 
of structural material throughout the structural 
domain SΩ .  Specifically, in the infinitesimal 
neighborhood about a point  SΩ∈X , the volumetric 
density of solid structural material )(Xφ  is given 
by 

 

∑
∈

=
η

φφ
A

AAN )()( XX                      (9) 

 
where the Aφ  represent nodal volumetric densities 
of solid material.  Since at each point SΩ∈X  there 
is generally a mixture of a solid structural material 
and a void-like material with respective volume 
fractions   )(Xφ  and )(1 Xφ−  a methodology is 
generally needed to determine the effective 
stiffness properties of the solid-void mixture or 
composite.  A number of different possibilities 
exist, and a fairly detailed review was presented in 
[10].  Here, a simple iso-deformation powerlaw 
mixing rule is employed in which it is assumed that 
both the solid and void-like material at a point X  
undergo identical deformations.  Accordingly, at 
each point X , both the solid and void-like 
materials are assumed to share the same 
deformation gradient: 
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Figure 2 Algorithm for Newton iterations during a 
representative time/load step (n+1)th of nonlinear 
structural analysis without control. 
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X
xXFXFXF

∂
∂

≡== )()()( voidsolid .         (10) 

 
Although the solid and void-like materials share the 
same state of deformation, the stress states in each 
are generally consistent with their own constitutive 
behaviors.  Assuming that both the solid and void-
like materials can be represented by the 
hyperelastic constitutive model of the preceding 
section it follows that a point  X  the stresses in the 
respective materials would be: 

θ
1τ

θ
1τ

void

solid

∂
∂

+′=

∂
∂

+′=

void

solid

JJ

JJ

Wdev 2)(U

;Wdev 2)(U

void

solid

             (11) 

In accordance with the powerlaw mixing rule the 
average stress in the solid-void mixture at point X  
is just the weighted sum as follows: 

 
( ) ( ) ( )[ ] void

P
solid

P τXτXXτ φφ −+= 1            (12) 
 
To achieve the effect of a void-like material in 

this work, the bulk and shear moduli of the void 
material are taken to be 610−  times those in the 
solid structural material.  In the mixing rule of Eq. 
(12), the powerlaw exponent P  is generally chosen 
larger than unity, but less than or equal to four.  A 
value of unity yields the classical Voigt rule of 
mixtures, whereas a value of 4=P leads to a 
penalized mixture in which stiffness approaching 
that of the solid material is achieved only for values 
of φ  very close to unity. 

 
In continuum topology optimization, the layout 

of structural material within SΩ  is iteratively 
varied, and for each variation, the structure is re-
analyzed.  The design of such a structure can be 
represented by a finite dimensional vector 

Nℜ∈b wherein each component of the vector 
represents a nodal volume fraction of solid material, 
and N  denotes the number of nodes in the analysis 
model at which the design can be varied.  Since the 
nodal volume fractions are continuous on the 
interval [ ]1,0∈φ , and since the design of a 
structure is represented by N  such variables, 
where N  can easily be on the order of 310  or 
greater, gradient-based optimization methods are 
typically most effective for solving continuum 
structural topology design problems. 

 
A design problem is usually solved by 

specifying a performance-based objective function 
( )bℑ  for the structure, and searching the design 

space Nℜ for the design *b  that optimizes the 
performance.   In gradient-based optimization, it is 
thus necessary to compute the so-called design 

derivatives of ℑ  as follows: 
 

        
b
u

ubb d
d

d
d

⋅
∂
∂ℑ

+
∂
∂ℑ

=
ℑ           (13) 

 
Fairly extensive details on computation of design 
derivatives of performance functionals for 
hyperelastic structures at finite deformations were 
provided in [11] and so they are not reproduced 
here.  An algorithmic view of finite deformation 
structural analysis and design sensitivity analysis 
embedded within a continuum topology design 
optimization framework is shown in Fig. 3.  
 

 
 
2.3 Control Within A Nonlinear Analysis 

Framework 
 
For a given layout of material within the 

structural model, it is useful to be able to solve for 
a sequence of actuation forces in

N
inininin fffff , , , , , 3210 K  

that, when applied to the mechanism’s input port, 
will result in the mechanism’s output port moving 
along a desired trajectory specified by a 
corresponding sequence of output port 
displacements: ( ) ( ) ( ) ( ) op**

2
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1

*
0   , , , , N

opopop
uuuu K . 
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Figure 3 Algorithm for nonlinear structural analysis 
and sensitivity analysis embedded within design 
optimization problem. 
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Within a typical single incremental load-step 
( )1+n  of the nonlinear structural analysis problem, 
one solves a sequence of trial incremental analysis 
problems with trial actuation forces ( ) K0,1,2,j ,1 =+

jin
nf  

until the equilibrium output port displacement 
( ) 1

1
1
1

+
+

+
+ ⊂ j

n
opj

n uu  associated with the trial actuation 
force is as close as possible to the target value for 
that increment ( )op

n
*

1+u  (Fig.4).   In a formal sense, 
the following optimization problem is solved for 
the actuation force numnpndofin

n
×

++ ℜ∈⊂ ext
1n1 ff  associated 

with each load step of the structural analysis 
problem: 

 
For predetermined 

n
in
n uf  ,  find 11  , ++ n

in
n uf  such that 

 
     )(min

in
1n

g 
+f

 and 0ufr =++ ),( 1n
in

1n               (14) 

     where:  

       ( ) 2
op

1n
in

1n ))((
op

g *
1nuufu +++ −=          (15) 

 
is the objective function; numnpndof ×

++ ℜ∈⊂ 1n
op

1n uu   is the 
resulting output port displacement due to the 
actuation force in

1n+f ; and ( )op*
1nu +

 is the target output 
port displacement for the ( )thn 1+ load step.   
   

 

 

 

 

 

 

 

 

 

To solve this unconstrained optimization 
problem within each load step of the nonlinear 
analysis problem, an iterative conjugate gradient 
algorithm is employed.  For a trial value of the 
actuation force the gradient of the objective 
function with respect to the actuation force is 
computed as: 

( ) ( ) in
1n

11
+

++ ⋅−=∇
f
fu

d
dg

ext
j
n

aj
n       (16) 

where numnp x ndofℜ∈au  is a vector of adjoint 
displacements satisfying the following linear 
adjoint problem: 

( )
j

n

j
n

a g

1
11n

j

+
++ ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−=⋅
u

uK                            (17) 

in which j
n 1+K  is tangent stiffness operator at the 

current trial equilibrium state of the model 
associated with ( )jin

n 1+f .  Once the gradient of the 
objective function is obtained, the algorithm for 
obtaining the subsequent trial actuation force 
(Fig. 5) is followed.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. CONTINUUM TOPOLOGY DESIGN OF 
HINGE-FREE MECHANISMS  

3.1 Design Problem Formulation 
 

     The first objective in the proposed framework is 
to achieve hinge-free workable compliant 
mechanism designs that can subsequently be 
controlled with actuation forces so that the output 
port follows specified trajectories. In the topology 
design formulation, usage is made of two distinctly 
different sets of springs having different purposes. 
The first set of springs are called artificial springs 
and they are chosen to be very stiff [7].   The 
second set of springs is called workpiece springs 
and these represent the much smaller resistance 
supplied by the workpiece when manipulated by 
the mechanism.   
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Figure 5 Algorithm for control problem interleaved 
with nonlinear analysis problem. 

Figure 4 Schematic of iterative control problem for 
actuation forces that make mechanism output port 
follow a desired path. 
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   To design a mechanism within the proposed 
framework, a mathematical mechanism model on a 
spatial region 3ℜ∈Ωs  is first created and support 
conditions are prescribed (Fig. 6).  An input port 
region inΓ  to which an input force inf  will be 
applied is identified, as is an output port region 

outΓ  at which outu  is monitored.    

     

 

 

 

 

 

 

 

 

 

 

     Compliant mechanisms can be designed and 
fabricated with a wide variety of materials and here 
the material considered is aluminum GPa; 73( =E  

.35)=ν .  Typically layout optimization of material 
in compliant mechanisms utilizing continuum 
topology optimization is performed with a 
prescribed amount C  of material specified as a 
fraction Mℑ  of the mechanism’s envelope volume.  
For a given design, the ratio of structural material 
volume to the mechanism’s envelope volume V  is 
computed as follows: 

( )∫
Ω

Ω=ℑ
b

VM d 1 Xφ .                         (18) 

To achieve mechanism designs free of de facto 
hinges, the material layout problem is solved to 
minimizes the sign inverse of the elastic mutual 
potential energy ( )MPE  under a given actuation 
force inf  while working against the stiff artificial 
springs attached to both the I/P and O/P of the 
mechanism..  Here, the MPE  is defined as follows: 

 
)1(MPE out

v
out uf ⋅=                                         (19) 

 
where )1(

outu  is the displacement at the output port 
due to a load inf  applied at the input port, and v

outf  is 
a virtual force at the output port specifying the 
direction of the desired output port displacement.  
A solution of the following optimization problem 

P1 is obtained subject to a material usage 
constraint and existence of an equilibrium solution 
of the structural equilibrium problem:    

 

P1:  For fixed material usage constraint value C 
and artificial spring stiffnesses  kb:  

( )[ ]),(    MPE- min M1 buru
b

⋅+−ℑ+ aCλ       (20) 

where numnp x ndofℜ∈r  is the residual force vector 
for the elastic structural model which vanishes 
when the structure is in equilibrium under the 
applied actuation forces and the spring reaction 
forces.  Also in the above, 1λ  is the nonnegative 
Lagrange multiplier associated with the material 
usage constraint, and numnp x ndofℜ∈au  is a vector 
of nodal adjoint displacements that serve as 
Lagrange multipliers to the structural equilibrium 
equality constraint [12].  

It is emphasized design solutions of P1, for a 
specified amount C  of structural material, will 
generally be very stiff.  To subsequently model how 
such mechanism designs function at finite 
deformations under real workpiece resistance, the 
stiff artificial springs are removed and the second 
set of workpiece springs are attached only to the 
O/P of the mechanism.  A realistic goal in design of 
compliant mechanisms is to have the mechanism be 
free of de facto hinges, and to have a 
complimentary compliance CE at finite deformation 
that exceeds a certain threshold value *

CE when 
working against the workpiece resistance in 
response to a specified actuation force inf .  Here the 
complimentary compliance CE  of the mechanism is 
defined as: 

 

  ( ) MPEE
v
out

in
out

v
outv

out

in
C *)1(

f

f
uf

f

f
=⋅=          (21) 

 
Depending on the material usage constraint 

value C  for which design problem P1 was solved,  
the resulting design solution might very well be too 
stiff with *

CC EE < .   Nevertheless, design problem 
P1 can be re-solved with progressively smaller 
values of the material usage constraint value C  
until *

CC EE = .   The objective is thus to find the 
largest value of the material usage constraint 
value C  for which *

CC EE = .  A concise 
mathematical statement of the extended design 
problem P2 that corresponds to this procedure is as 
follows: 

 
P2:  For specified artificial springs ( ink , outk ) 
        and workpiece springs workpiecek  find: 

inΓ

outΓ

inf

v
outf

ink

outk

Fig. 6.  Schematic of compliant mechanism design 
problem using artificial springs attached to both input 
port and output port. 
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( )1,0inf ∈C  and ( )MPE-min
Nℜ∈b

 such that:   (22a) 

0M ≤−ℑ C ; material usage constraint     (22b) 
0bur =),,( )1( C ; Case 1 equilibrium        (22c)  

0bur =),,( )2( C ;    Case 2 equilibrium      (22d) 
( ) 0,,)2(* ≤− CEE CC bu ; Case 2 compliance   (22e) 

  
In P2, the Case 1 analysis has stiff springs attached 
to both the I/P and O/P of the structural model, and 
the structure is analyzed using linear elastic 
analysis.  The resulting displacement field in the 
structural model from which MPE  is computed is 
denoted )1(u . In Case 2 analysis, the stiff springs 
are removed from the model’s I/P and O/P and 
moderate workpiece springs are attached to the O/P.  
The finite deformation hyperelastic response of the 
structure )2(u  to the actuation force inf is computed, 
from which the complimentary compliance   is also 
computed.   In Eq. (22e) of P2, *

CE  is the target 
value for complimentary compliance when working 
against the workpiece springs under actuation force 

inf . The approach taken herein to solve P2 is to 
first solve design problem P1 for numerous values 
of the material usage constraint C .  Each of the 
designs for different C values is then analyzed at 
finite deformation under the actuation force inf  and 
complimentary compliances ( )CEC ,,)2( bu  are 
computed.  The design b  associated with the 
material usage constraint value C that yields the 
target complimentary compliance *

CE  is then 
selected.   

 
3.2 Design of Hinge-Free Inverter Mechanisms 
 
The function of this device is to have the output 

port displace in a direction opposite to that of an 
input force applied at the input port.   Fig. 7 shows 
the design domain sΩ  of the inverter problem with 
partial fixed support boundaries at the left hand 
side.  The domain, which is discretized with a 
minimum of 100 x 100 bilinear quadrilateral finite 
elements, is loaded with Nf in 100=  applied to the 
input port. The deflection at the output port in the 
direction of  v

outf  is to be maximized. The large 
artificial spring stiffness values used on both the 
input and output ports of the mechanism are 

-110 mN106.1 ⋅⋅=bk . 
 
To demonstrate the effects of material usage 

constraint on resulting compliant mechanism 
characteristics, the design problem P1 was solved 
with: 30.0=C (Fig. 7b,c); 10.0=C (Fig. 7d,e); 
and 03.0=C (Fig. 7f,g). Each design functions 
without any de facto hinges, and the more sparse 
designs feature nicely distributed elastic 

deformation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If for an actuation force Nfin 100=  a threshold 

complimentary compliance JEC
3* 102 −⋅=  is 

desired when mNkworkpiece /106=  then 05.0inf =C  
as is shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
4 CONTROL EXAMPLES 
 
 
 
4. INVERTER AS A PATH FOLLOWING 

COMPLIANT MECHANISM 
 
In the preceding section the inverter 

mechanisms (Fig. 7) were designed such that their 
output ports follow a horizontal path under the 
effect of a horizontal actuation force. The next goal 

e) g) 

f) 

a) 

fin 

100 elements 

3cm 

3cm 

100 elements
out k 

bk bkv
outf

d) 
(i) 

(j) 

(i) 

(j) 

b) 

c) 

Fig. 7.  a) Inverter mechanism design region and 
loading conditions;  b) design solution of P1 with 
C=.30; c) deformed configuration; d) design 
solution for C=.10; e) deformed configuration; 
f) design solution with C=.03; g) deformed  
configuration.   

Fig. 8 Computed complimentary compliances of the 
aluminum inverter mechanism at finite deformation 
versus material usage factor C for different 
workpiece spring stiffnesses.   

1.E-05

1.E-04

1.E-03

1.E-02

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
M aterial Usage C

C
om

pl
im

en
ta

ry
 C

om
pl

ia
nc

e 
(N

m
)

k=0.1 MN/m
k=1 MN/m
k=10 MN/m

10-3

10-2

10-4

10-5



8 
 

of this work is to test the ability of the proposed 
control algorithm to solve for actuation forces so 
that the mechanisms can follow paths close to the 
originally intended path or even paths not so close 
to the originally intended path.  In all of the control 
problems solved below, the sparse inverter 
mechanism design shown in Fig. 7f was utilized. 

 
The mechanism was first controlled to follow a 

backward horizontal path and then a forward 
horizontal path in the absence of workpiece 
resistance (Fig. 9).  The required forces to control 
the mechanism in the backward path are  quite 
linear whereas those required to move the O/P 
forward are somewhat nonlinear.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, the mechanism was controlled to follow a 

backward inclined path and then a forward inclined 
path (Fig. 10), both in the absence of any 
workpiece resistance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The final control test for the inverter 
mechanism in the absence of workpiece resistance 
solved for the actuation forces to move the O/P in a 
backward parabolic path and then a forward 
parabolic path (Fig. 11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Against relatively light workpiece resistance 

mNk /105=  the mechanism was then controlled to 
undergo a backward inclined motion, and then a 
forward inclined motion (Fig. 12).  The computed 
control force versus displacement characteristics of 
the mechanism are similar to those computed in the 
absence of any resistance (Fig. 10), although the 
magnitudes of the necessary control forces are 
somewhat larger, as would be expected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When an attempt was made to make the same 

Fig. 9 a) Mechanism is controlled to follow a 
backward horizontal path; and b) a forward 
horizontal path; c) graph showing the computed 
relation between the input force components and 
the output port displacements. 
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Fig. 10.  a) Mechanism when controlled to follow 
backward inclined path; and b) a forward inclined path; 
c) graph showing computed relations between actuation 
force components and output port displacements.  

)c

1
0.5

0
-0.5
-1

-1.5
-2
-2.5

100
50
0

-50
-100
-150
-200

-250

0 1-1-2 2 3-3

0 100 200 300-100-200-300

uy(mm)

ux(mm)

Fy(N)

Fx(N)

Input force; Output displacement; Trajectory

)(+x

)(+y

)(−x

Desired path)a

xF)(+

xy =
yF)(−

xy =

)b

xF)(−

yF)(+

300

-3

-2

0

-1

2
-200 -100 0 100 200-300

0

100

-100

-200

200

-400

32

1

0-1-2-3

-300

-4

1
ux(mm)

uy(mm)

Fx(N)

Fx(N)

)a

Desired path

)b

2xy=

)(+x

)(+y xF)(−

yF)(+
xF)(+

yF)(−

xF)(+

yF)(−

)(−x

2xy −=
Desired path

Input force; Output displacement; TrajectoryInput force; Output displacement; Trajectory

Fig.  11. a) Mechanism when controlled to follow 
follow forward parabolic path; and b) a backward 
parabolic path; c) graph showing computed relations 
between the input forces and output displacements.  

Fig. 12. a) Mechanism when controlled to follow 
forward inclined path against workpiece springs 
with stiffness 105 N/m; and b) when following a 
backward inclined; c) graph showing computed 
relations between input forces and output 
displacements. 
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sparse mechanism follow a backward and then 
forward inclined path when working against very 
stiff workpiece resistance ( )mNk /107= , the 
mechanism was found to be too compliant.  Then 
the somewhat stiffer inverter mechanism obtained 
with ( )10.0=C  and shown in Fig. 7d was used 
with more success.  The computed control forces 
versus O/P displacements are shown in Fig. 13.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.  DISCUSSION AND CONCLUSIONS 
 
In this work, a control algorithm within a 

computational finite deformation analysis 
framework has been proposed and demonstrated on 
hinge-free compliant mechanism designs obtained 
using continuum topology optimization.  In the 
proposed control framework, one solves for the 
required actuation forces at the mechanism’s input 
port such that the mechanism’s output port follows 
a specified trajectory in an optimal sense.  
Although many issues remain to be investigated in 
combined design and control of compliant 
mechanisms, the concept of using control seems 
very promising.   
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