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ABSTRACT

This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours
by using topology optimization. In the proposed framework, alternative structural designs are described with
the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain.
Since two or more materials are permitted to simultaneously occupy local regions of the design domain,
small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt
(isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimiza-
tion problems involving non-linear material behaviours are formulated and algorithms for incremental topology
design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the struc-
tural topology design formulation and the developed sensitivity analysis algorithms is established on three
small structural topology problems separately involving linear elastic materials, elastoplastic materials, and
viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two
topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated
through the second example that structures optimized for maximal strength can be signi�cantly di�erent than
those optimized for minimal elastic compliance. ? 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

1.1. Overview

Variable topology material layout optimization is becoming an increasingly potent design tool in the
layout of linear elastic structures for high sti�ness,1–11 in the design optimization of linear elastic
composite materials,11–14 and in the design of linear elastic structures for tailored eigenvalues.15–17

In the so-called ‘structural topology optimization’ a �xed spatial design domain 
D is designated
as a subset of a full structural domain 
S, and optimal spatial material distributions throughout

D are determined. Many variable topology material layout optimization frameworks today feature
continuous formulations of the problem, in which either amorphous mixtures or microstructured
mixtures (composites) are permitted to reside throughout 
D in intermediate and even �nal design
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states. Since it a�ects both the nature of the results obtained and the class of problems which can be
feasibly attempted, an important facet of developing general methods to solve continuous variable
topology material layout optimization problems is the choice of physical and constitutive treatment
of the mixtures or composites. In Reference 18 a continuous structural topology optimization
formulation was presented for linear elastic structures using amorphous mixtures of materials whose
stress–strain behaviours are governed by classical Voigt and Reuss mixing rules. The objective of
this paper is to extend the Voigt–Reuss topology formulation to the treatment of structures featuring
materially non-linear inelastic behaviours.

1.2. Homogenization-based structural topology frameworks

Many very successful frameworks for continuous topology optimization of linear elastic struc-
tures treat biphasic mixtures of materials as composites characterized by parameterized
micromorphologies.1; 2; 6–10 To capture the e�ective response behaviour of such composites in struc-
tural analysis computations, e�ective medium constitutive models and their functional dependence
upon microstructural design parameters are required. For general composites
homogenized responses are often computed using classical micromechanics methods,19–21 whereas
for periodic composites e�ective medium responses are often computed with unit cell=homogeniza-
tion frameworks.22–26

For the special case of linear, two-phased elastic composites (material phases A and B are
both linear elastic and perfectly bonded), the functional form of the e�ective medium constitutive
model will be that of linear, anisotropic elasticity, and standard methods can be employed to
calculate the coe�cients of the e�ective elasticity tensor C∗. For example, in strain-controlled
homogenization of linear elastic periodic composites22–26 a macroscopic strain Ekl is imposed on
the unit cell of the composite (Figure 1) and local equilibrium state equations �ij; i=0 are solved
(subject to periodic boundary conditions) on the domain of the unit cell �
s for the microscale
displacement �eld u : �
s 7→<3. In solving the local equilibrium state equation over �
s, the local
strain �eld U(kl)(X) and the local stress �eld �(kl)(X) are explicitly computed. By the average
stress and strain theorems for composites subjected to macroscopically homogeneous strain Ekl
loadings,27 the corresponding macroscopic stress tensor S (kl)ij is simply the volume average of the
local stress �eld

S(kl)ij =
1
V

∫

S

�(kl)ij dV (1)

Accordingly, by solving the unit cell problem for appropriate variations of the k and l indices of
the macro strain tensor E, the coe�cients of the e�ective medium elastic sti�ness tensor for the
composite are simply

C∗ijkl=
S(kl)ij

Ekl
(2)

Due to the relative simplicity of such procedures, homogenization methods (the rigorous justi�ca-
tion for which is presented in Reference 28) have gained strong acceptance in structural topology
optimization of linear elastic structural systems.
In composites where one or more of the comprising materials feature inelastic behaviour, how-

ever, the homogenization procedures can become considerably more complicated. The di�culty

Int. J. Numer. Meth. Engng., 40, 3785–3814 (1997) ? 1997 John Wiley & Sons, Ltd.



VOIGT–REUSS TOPOLOGY OPTIMIZATION FOR STRUCTURES 3787

Figure 1. (a) Unit cell �
s isolated from a composite structure 
B having a periodic material structure with wave-
lengths �1; �2; �3. (b) Schematic of numerical homogenization experiment performed on the unit cell �
s to obtain e�ective

stress–strain (S–E) responses and to compute the local �elds �(X) and U(X)

arises primarily because the functional forms of e�ective medium constitutive models for com-
posites with inelastic constituents are considerable more complex than those of linear anisotropic
elasticity and are very di�cult to determine. For example, even in the relatively simple case of
a two-phased composite where one phase is linear, isotropic and elastic, and the second phase
is isotropic and elastic-perfectly–plastic, the macroscopic stress–strain response of the composite
will generally feature anisotropy of both strength and sti�ness and gradual hardening plasticity
behaviour12; 25 due to the spatial variation in onset of local yielding behaviour on the microscale.
With general inelastic constituents there is no �xed relationship between the applied macroscopic
strains Ekl and the local strain �eld Ukl(X) as there is for linear elastic composites, and the local
incremental compliance of the material located at each point X in the unit cell can vary with
such quantities such as local stress magnitude, loading rate, and history variables. As a result,
even simple two-phased composites, where only one phase has non-linear inelastic behaviour, can
potentially behave as if comprised of an in�nite number of similar materials. This has been noted
previously in References 24 and 25 and is reected in part in the constitutive modelling techniques
used by some investigators.29 As a result, one can only guess at the appropriate functional form
of constitutive models for composites involving inelastic constituents, and such guesses usually
provide only gross approximations.30

1.3. Structural topology formulation based on simpli�ed mixing rules

In light of the di�culties associated with constitutive modelling of inelastic composites, the
extension of structural topology optimization frameworks based on homogenization methods to
applications involving general combinations of inelastic materials appears to be quite challenging.
Two classical and very approximate simpli�cations to unit cell homogenization methods are those
proposed by Voigt31 and Reuss.32 In Voigt’s simpli�cation, the strain �eld U(X) throughout the
unit cell is assumed to be uniform and equal to that of an applied macro strain E, whereas in
Reuss’s simpli�cation, the stress �eld �(X) throughout the composite is assumed to be uniform and
equal to that of an applied macrostress S. Under these approximate but greatly simpli�ed models,

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3785–3814 (1997)
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the microstress and microstrain �elds in the composite are fully determined by the assumptions
being applied. For example, under the Voigt assumption, application of a macroscopic strain state
U(X)=E to the composite leads to the macroscopic stress state

SVoigt =�A�A(E) + �B�B(E) (3)

where �A and �B represent the respective volume fractions of materialsA and B in the composite.
Under the Reuss assumption, application of a uniform stress state �(X)=S to the composite leads
to the following macroscopic strain state:

EReuss =�AUA(S) + �BUB(S) (4)

In the preceding expressions, (UA; UB), (�A; �B) represent, respectively, the strain and stress states
in material phases A and B. Due to the relative simplicity of these forms for obtaining the
e�ective stress–strain relationships for mixtures of inelastic materials, they are potentially very
attractive for usage in structural topology optimization computations.
A number of features of the classical Voigt and Reuss assumptions are well-recognized:

1. They do not in any way provide accurate constitutive material models for composites, but
rather only loose upper (Voigt) and lower (Reuss) bounds on the sti�ness behaviours of
composites.

2. In a strict sense, composites which satisfy either the Voigt or Reuss assumptions are not
physically realizable since the Voigt assumption leads to a local stress �eld that cannot be in
equilibrium, and the Reuss assumption leads to a local displacement �eld that cannot satisfy
compatibility requirements.

While the Voigt and Reuss mixing rules are not physically realizeable, it is worth noting that many
of the microstructures used in alternative topology frameworks are not practically manufacturable
due to materials science and processing constraints. Since the objective of this e�ort is to investigate
a topology optimization framework that will employ mixtures or composites only in intermediate
design states and which will be virtually free of such mixtures in the �nal design, these non-
realizeability features of the Voigt and Reuss simpli�cations are acceptable.

1.4. Scope

The topology formulation under study in this paper will therefore describe general mixtures
of materials physically in terms of the volume fractions of the material phases present, and will
use hybrid combinations of the classical Voigt and Reuss mixing rules to describe the gross
features of their constitutive behaviours. In the body of this paper, algorithms are derived for
the numerical integration of the incremental constitutive equations of a Reuss mixture of two
general, isotropic solids and a Voigt mixture of two general, isotropic solids. The algorithms
e�ectively create approximate incremental constitutive models for the local mixtures at the FEM
spatial integration points. The macroscopic constitutive behaviours of the mixtures are based on
the incremental constitutive behaviours of the individual material phases present, which naturally
depend upon their local loading and deformation histories. The perceived utility of this approach
is that general materials can be combined algorithmically to obtain usable stress–strain relations in
structural analysis calculations without the necessity of devising appropriate functional forms for the
constitutive models of mixtures and describing the variation of the free parameters in such models
with the variation of design variables such volume fractions and microstructural parameters. The
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proposed approach being studied may provide one feasible avenue for extending topology design
methods to important classes of problems involving inelastic materials.
Having selected a method for characterizing approximate constitutive behaviours of material

mixtures, a structural topology optimization formulation that addresses non-linear material be-
haviours is developed using non-linear structural analysis techniques. Furthermore, since optimal
topology solutions are to be obtained with gradient-based optimization techniques, accurate and
e�cient design sensitivity analysis methods are required. In previous works on shape design of
structures involving non-linear, inelastic materials, adjoint sensitivity methods have been investi-
gated by Arora and Lee33 and direct di�erentiation methods have been implemented and studied
by Ohsaki and Arora34 and Haber and Vidal.35 Here, direct di�erentiation techniques are devel-
oped for sensitivity analysis of generalized compliance with respect to the topology of structural
systems. The proposed design sensitivity expressions are valid for general materially non-linear
structures that remain within the geometrically linear regime of behaviour.
The remainder of this paper is organized as follows. In Section 2 a microstructure free frame-

work for describing the distribution of material phases (including mixtures) throughout a �xed
spatial design domain is briey reviewed. Section 3 formulates structural topology problems where
mixtures of general non-linear materials are involved, and develops incremental design sensitivity
algorithms based on direct di�erentiation methods. Integration algorithms for mixtures of general
inelastic materials in a small-strain framework are developed in Section 4 for both the Voigt and
Reuss assumptions. The consistency between the proposed Voigt–Reuss topology formulation and
the proposed design sensitivity analysis methods is established in Section 5 and the methods are
demonstrated on two sample computations involving optimization of structural topology to maxi-
mize a structure’s ultimate strength. The general performance of the new mixing algorithms and
design sensitivity analysis algorithms are assessed in Section 6 and speci�c areas requiring further
investigation are discussed.

2. DISTRIBUTION OF MATERIALS

In the following development, the complete undeformed spatial domain of the structure being
designed is denoted by 
S; its designable subset by 
D; and its non-designable subset in which
the spatial=topological arrangement of materials is taken to be �xed by 
N. The arrangement of
N pre-selected candidate materials in 
D remains to be determined and so this region is called
designable. A set of single or multiple loading=boundary conditions to which 
S will be subjected
are speci�ed and a starting design b(0) which speci�es the initial material layout in the 
D is
selected. For each set of loading=boundary conditions, the structure is analysed as a boundary
value problem.
Since the design of the structure is considered to be the spatial distribution of the N candi-

date materials throughout the spatially �xed design domain 
D, a system is needed to describe the
material distributions. For the discrete two-material layout problem involving material A and ma-
terial B, the binary indicator function describing the arrangement of material A would be

�A(X)=
{
1 if material A fully occupies point X ∈ 
D

0 otherwise

}
(5)
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while that for material B would be

�B(X)=
{
1 if material B fully occupies point X ∈ 
D

0 otherwise

}
(6)

The respective domains 
A and 
B occupied by materials A and B would simply be


A = {X ∈ 
D|�A(X)= 1; �B(X)= 0} (7a)


B = {X ∈ 
D|�B(X)= 1; �A(X)= 0} (7b)

Preference is given here to discrete �nal material distributions that satisfy 
A ∩ 
B= ∅ and

A∪
B=
D. These distributions are achieved, however, through continuous formulations which
permit mixtures to exist throughout the design domain 
D. By permitting mixtures, the material
phases A and B are allowed to simultaneously and partially occupy an in�nitesimal neighbourhood
about each spatial point X in 
D. In describing the mixtures, the binary indicator functions above
are no longer useful, but a straightforward and continuous generalization of the binary indicator
function concept is available using the volume fraction concept. As employed here the volume
fraction of material phase A at a �xed spatial point X in the design domain 
D is denoted
by �A(X) and represents the fraction of an in�nitesimal volume element surrounding point X
occupied by material A. The volume fraction de�nition for material phase B and others is similar.
Natural constraints upon the spatial volume fractions for the two-material problem are

06�A(X)6 1; 06�B(X)61; �A(X) + �B(X)= 1 (8)

The last physical constraint of (8) states that the material volume fractions at X are not independent.
Thus in two-material problems as treated in this paper, one need only be concerned with the layout
of phase A since that of phase B follows directly from (8)3. The volume fraction method of
describing material distributions neither relies upon nor assumes a microstructure or morphology
of the local mixture and is a very straightforward generalization of the binary indicator function
approach.
In the proposed topology design optimization framework, the design domain 
D will be dis-

cretized into NEL low-order �nite elements such as bilinear continuum degenerated shell elements
or trilinear three-dimensional continuum elements. For these low-order elements, the independent
material volume fraction �A is taken as piecewise constant over the spatial domain occupied by
individual �nite elements. The designable spatial=topological distribution of material phase A in

D can thus be described by a vector of design variables b with contributions from each element
comprising 
D. Speci�cally, the design vector b has the de�nition:

b := {�A1 ; �A2 ; : : : ; �ANEL} (9)

That is, the full vector of design variables b is comprised of NEL scalar-valued element level
contributions �Ai , each of which represents the volume fraction of phase A in the ith element.
This system allows the two candidate materials to be arbitrarily distributed throughout the NEL
�nite elements comprising the design domain 
D, subject only to natural constraints such as∑2

j= 1 �ij =1; for each i ∈ {1; 2; : : : ;NEL} and �ij ∈ [0; 1] for j ∈ {1; 2}.

Remark 2.1. It is recognized that compliance minimization topology formulations using bilinear
(or trilinear) interpolation of displacement �elds and material distribution layout design parameters
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VOIGT–REUSS TOPOLOGY OPTIMIZATION FOR STRUCTURES 3791

that are uniform over individual element domains are unstable in that they generally yield mesh-
dependent, checkerboarding designs.36; 37 This instability problem can be easily recti�ed, however,
using the spatial �ltering techniques proposed in Reference 18, so that stable material layout
designs can be achieved with low-order elements.

Global material cost constraints are generally imposed upon the designed structure by specifying
appropriate upper or lower limits on the global volume fraction of the independent material phase.
A typical upper bound for a solid phase is represented as 〈�A〉−CA6 0, where CA is a designer
speci�ed upper bound value on the global volume fraction of material phase A in the structural
domain 
S. The global volume fraction of phase A over the structural domain is calculated as

〈�A〉=

∫

 S

�A(X) d
S∫

 S

d
S

(10)

3. THE TOPOLOGY DESIGN FORMULATION

3.1. Objective and constraint functionals

Numerous formulation options exist in structural and composite material topology design opti-
mization via utilization of assorted combinations of objective and constraint functionals, and the
framework advanced here accommodates these alternatives. All design optimization formulations
involve speci�cation of an objective functional and a number of constraint functionals which can
be of either equality or inequality type. In the proposed formulation, the design variables are
continuous and real-valued and it is assumed that the associated functionals, both objective and
constraints, will also be continuous and real-valued as well as piecewise di�erentiable.
Within the realm of continuous real-valued functionals F it is helpful to distinguish between

purely cost based functionals which are independent of the response of the system being designed
(that is F=F(b)) and performance based functionals which by de�nition depend upon both the
design variables b and the performance or state of the designed system which can generally be
described in terms of u, the vector displacement �eld (that is F=F(b; u)). To demonstrate, an
example of a pure cost functional for the structural topology optimization problem is the overall
volume fraction of one of the candidate constituent phases, which can be speci�ed as

F�A
= 〈�A〉 − CA (11)

in which 〈�A〉 represents the volume average of �A over the entire design domain 
D. In contrast,
the global strain energy functional over the structural domain for general loading conditions would
be de�ned as

FE =
∫ t

0

∫

 S

� : U̇ d
S d� (12)

where � is a parametric time variable. The strain energy functional is clearly dependent upon both
the design variables b and the related performance of the system u. A typical topology design
optimization problem to minimize generalized compliance might be to minimize the strain energy
FE in a structure undergoing a prescribed, force-controlled loading programme, thereby maximizing
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the sti�ness of the structure under the applied loading, subject to a volume constraint on one
of the material phases. An equally viable alternative formulation of the generalized compliance
minimization problem would be to maximize the strain energy FE in a structure undergoing loading
from a programme of prescribed displacements, again with an upper bound constraint on one of
the material phases.
The topology design optimization process is iterative in nature, requiring the solution of one

or more analysis problems with each new variation of the design. Intermingled with solving the
analysis problem(s) is the evaluation of the objective and constraint functionals as well as their de-
sign gradients. The following two subsections formulate the general analysis and design sensitivity
analysis problems.

3.2. The analysis problem

Topology design can be performed to �nd the optimal layout of a structure to: minimize com-
pliance; maximize strength; tailor eigenvalues; and tune dynamic response. These varied objectives
require the solution of elliptic boundary value problems; eigenvalue problems; and hyperbolic ini-
tial and boundary value problems. While the framework under study here can and does include
all of these classes of problems, attention is restricted here to the class of problems requiring so-
lution of quasi-static material non-linear elliptic boundary value problems, which naturally recover
linearity as a special case.
The strong form of the general material non-linear elliptic boundary value problem to be solved

is: Find u : (
S × [0; T ]) 7→<3 such that
�ij; i + �j =0 on 
S ∀t ∈ [0; T ] (13a)

subject to the boundary conditions:

uj(t) = gj(t) on �gj for j=1; 2; 3; t ∈ [0; T ] (13b)

ni�ij = hj(t) on �hj for j=1; 2; 3; t ∈ [0; T ] (13c)

As is customary, it is assumed that the surface � of the structural domain 
S admits the decom-
position �=�gj ∪ �hj and �gj ∩ �hj = ∅, for j=1; 2; 3.
Since the analysis problem is being solved in the context of topology optimization, it is assumed

that a local microscopic mixture of two generic materials A and B resides at each point X in
the structural domain 
S. In equation (13a) � thus represents the macroscopic stress of the local
mixture which is dependent upon the constitutive properties of the two material phases and the
mixing rule employed

�(X)= �[�A(UA; U̇A; �A); �B(UB; U̇B; �B); (�A; �B)] (14)

Detailed algorithmic treatment of the mixing rules in accordance with the Voigt and Reuss as-
sumptions is provided in Section 4 and includes a decomposition of the local macroscopic strain
U=∇su into strains UA and UB for the respective material phases. The mass density � of the local
mixture is simply �=�A�A + �B�B:
The weak or variational form of the problem is obtained by restating the strong form as∫


 S

[�ij; i�uj + �j�uj] d
S = 0 (15)
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from which integration by parts, usage of Green’s Theorem and utilization of the natural boundary
conditions gives the virtual work equation∫


 S

�ij��ij d
S =
∫

 S

�j�uj d
S +
∫
�h

hj�uj d�h: (16)

Usage of a Galerkin formulation in which the real and variational kinematic �elds are expanded
in terms of the same nodal basis functions, and discretization of the time domain into a �nite
number of discrete time points, leads to the following force balance equations at each unrestrained
node A in the mesh as here at the (n+ 1)th time step:

(rA)n+1 = (f
int
A )n+1 − (f extA )n+1 = 0 (17)

where

(f intA )n+1 =
∫

 S

BTA : �n+1 d
S (18a)

(f extA )n+1 =
∫

 S

�NAn+1 d
S +
∫
�h

NAhn+1 d�h (18b)

In (18), BA represents the nodal strain displacement matrix (BA=∇sNA(x)), and NA denotes the
nodal basis function for the Ath node. In general, (17) represents a set of non-linear algebraic
equations which must be solved in an iterative fashion for the incremental displacement �eld
(�u)n+1 = un+1−un for each time step of the analysis problem. Numerous options exist for solving
non-linear systems such as (17), a few of which are reviewed in detail in Reference 12.

3.3. Design sensitivity analysis algorithms

Energy-based functionals to minimize the generalized compliance of structures are here consi-
dered to be of the form

�(t)=
∫ t

0

∫
�h

h(�) · u̇ d�h d�+
∫ t

0

∫

 S

�(�) · u̇ d
S d�−
∫ t

0

∫
�g
n · � · ġ(�) d�g d� (19)

Generalized compliance functionals � which quantify the work done by external agencies on the
structural domain 
S can be separated into work terms resulting solely from applied external trac-
tion forces h(�) and body forces �(�), and work terms resulting solely from applied displacements
g(�). In structural topology optimization of linear elastic structures, the case most often considered
has been that of prescribed external force type loadings. For inelastic structures, however, such
force-controlled structural analysis problems are potentially ill-posed (solutions of Eq. (17) may
not exist), and so formulations for structures loaded by displacements must also be considered.
In the following, it is assumed for simplicity of presentation that the structures being designed
are loaded either by applied external traction and=or body forces or by prescribed, non-vanishing
displacements. Sensitivity analysis algorithms for the generalized compliance functional (19) are
developed independently in the following two subsections for force-type loadings (Section 3.3.1)
and for displacement-type loadings (Section 3.3.2). For the more general case of structures acted
upon simultaneously by both types of loadings, the DSA results for the special subcases can be
straightforwardly combined.

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3785–3814 (1997)
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3.3.1. Generalized compliance DSA for force-loaded structures. For structures subjected only to
external force type loadings, the generalized compliance functionals to be treated can be evaluated
incrementally each time step of the analysis problem as

FE(tN )=FE(t0) +
N∑
n= 1

(�FE)n (20)

where

(�FE)n+1 = 1
2 (f

ext
n + f extn+1) · (�u)n+1 = f extn+ 1

2
· (�u)n+1 (21)

In calculating the total design derivative of the energy functional (20) it will be assumed that
FE(t0) either vanishes or is independent of the design state b. Thus to calculate the design gradient
of (20) one needs only to sum the design gradients of the incremental energy contributions given
by (21). The design gradient of the incremental energy functionals under external force loadings
takes the form

d(�FE)n+1
db

=
@(f extn+1=2)

@b
· (�u)n+1 + (f extn+1=2) ·

d(�u)n+1
db

(22)

While the �rst term on the right-hand side of (22) is quite simple to calculate, the second term is
somewhat more involved and requires extra precautions in the calculation of [d(�u)n+1]=db.
At the generic (n+1)th time step the analysis problem moves from the equilibrium state rn= 0

to the equilibrium state rn+1 = 0. Since the equilibrium state is assumed to be satis�ed at all time
steps, irrespective of the design state b, we can designate the incremental state equation as

�rn+1 = rn+1 − rn = 0 (23)

which for the case of the material non-linear, but geometrically linear, analysis problems under
consideration takes the form:

�rn+1 =
∫

 S

BT : (�n+1 − �n) d
S − (f extn+1 − f extn ) (24a)

=
∫

 S

BT :��n+1d
S −�f extn+1 (24b)

If general inelastic material behaviours are assumed, the local stress update at a speci�c integration
point in 
S has a fading memory of all previous stress and strain states at this same point and
will thus be of the general form: ��n+1 =��n+1(b; �n; Un; �Un+1). For general constitutive models
having this form of algorithmic stress update, the complete design derivative of the stress increment
takes the form

d��n+1
db

=
@��n+1
@b

+
@��n+1
@Un

@Un
@un

dun
db

+
@��n+1
@�n

d�n
db

+
@��n+1
@�Un+1

@�Un+1
@�un+1

d�un+1
db

(25a)

=
@��n+1
@b

+ Zn+1 :B · dun
db

+ Yn+1 :
d�n
db

+ Cn+1 :B · d�un+1
db

(25b)
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where

Yn+1 ≡ @��n+1
@�n

; Zn+1 ≡ @��n+1
@Un

; Cn+1 ≡ @��n+1
@�Un+1

(26)

Accordingly, di�erentiation of the incremental equilibrium state equation at the end of the (n+1)th
time step yields:

0 =
d�rn+1
db

(27a)

=
∫

 S

BT :
@��n+1
@b

d
S +
∫

 S

BT :Yn+1 :
d�n
db

d
S

+
∫

 S

BT :Zn+1 :B d
S · dundb +
∫

 S

BT :Cn+1 :B d
S · d(�u)n+1db
− @�f extn+1

@b

(27b)

Remark 3.1. Cn+1 in (26) and (27b) is the generalization of the consistent tangent operator38

for the local mixture of materials to be discussed in Section 4. In non-linear sensitivity analysis,
it has been previously noted,35 that the maintenance of accuracy in sensitivity results, especially
with sizable load increments, is vitally dependent upon the usage of such tangent operators which
are consistent with the integration algorithms for the constitutive models being employed.

The expressions in (27b) can be inverted to obtain [d(�u)n+1]=db as

d(�u)n+1
db

= −[Kn+1]−1
[ ∫


 S

BT :
@��n+1
@b

d
S +
∫

 S

BT :Yn+1 :
d�n
db

d
S

+
∫

 S

BT :Zn+1 :B d
S · dundb − @�fextn+1
@b

]
(28)

where Kn+1 is the tangent sti�ness operator for the incremental structural analysis problem evalu-
ated with the converged displacement �eld following the (n+1)th time step. The result of (28) is
employed in (22) to complete the gradient calculation of the incremental energy function. In those
classes of problems where it is actually necessary to compute and maintain the design gradient of
the displacement vector du=db, the result of (28) must also be used to update the design gradient
of the displacement vector un+1 for usage in subsequent DSA operations:

dun+1
db

=
dun
db

+
d(�u)n+1
db

(29)

In addition, the design gradient of the stress at each integration point is then updated according
to (25). It is thus quite clear that variable topology design sensitivity analysis with general inelastic
materials is potentially quite involved, generally requiring computation and storage of du=db at
the nodes where external forces are applied, and computation=storage of d�=db in those elements
having nodes at which external forces are applied. Given the large number of design variables em-
ployed in topology optimization, the required computational e�ort and memory can be considerable
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depending upon the complexity of the loading pattern. For certain classes of materials, however, it
will not be necessary to compute or store either of these quantities, leading to considerable savings.

3.3.1.1. Special case 1: linear elastic structures. In structures of linear elastic materials the form
of the stress update equation throughout 
S will be �n+1 = �n+E(b) :�Un+1. When the constitutive
equation is of this simple form, then (28) reduces to

d(�u)n+1
db

= − K−1 · @�rn+1
@b

= − K−1 ·
[∫


 S

BT :
@(��)n+1
@b

d
S −
@�fextn+1
@b

]
(30)

Accordingly, (22) can thus be re-written in the particularly simple form, making usage of (30):

d(�FE)n+1
db

=
@f extn+1=2

@b
·�un+1 + uan+1 ·

@�rn+1
@b

(31)

where uan+1 = − K−1 · f extn+1=2. Thus for the case of linear elastic structures it is not necessary to
explicitly calculate or store either of the total derivative quantities du=db or d�=db.

3.3.1.2. Special case 2: structures of inviscid elastoplastic materials. In structures of inviscid
elastoplastic materials where the elasticity tensor is constant, the form of the stress update equation
at each integration point can be written

��n+1 =E : (�Un+1 −�Upn+1) (32)

where E is the e�ective elasticity tensor for the local mixture of materials and �Upn+1 is the plastic
strain increment for the mixture. Using generalized consistent tangent operators38 the linearized
form of this update equation can be written simply as

��n+1
:= Cn+1 :�Un+1 (32)

where Cn+1 is the e�ective consistent tangent operator for the local mixture of elastoplastic
materials. When the linearized incremental constitutive equation is of this simple form, then (28)
reduces to

d(�u)n+1
db

= − [Kn+1]−1 ·
[ ∫


 S

BT :
@��n+1
@b

d
S −
@(�f extn+1)
@b

]
(33)

Accordingly, (22) can thus be re-written in the particularly simple form, making usage of (33):

d(�FE)n+1
db

=
@f extn+1=2

@b
· (�u)n+1 + uan+1 ·

[ ∫

 S

BT :
@��n+1
@b

d
S −
@�f extn+1

@b

]
(34)

where uan+1 = − K−1
n+1 · fextn+1=2 plays the role of an adjoint displacement �eld.

Remark 3.2. For the special case of force-loaded structures comprised of inviscid, elastoplastic
materials, as for linear elastic materials, is not necessary to explicitly calculate or store either of
the total derivative quantities du=db or d�=db.

Remark 3.3. If a strict direct di�erentiation approach were employed, then the operations sug-
gested by (33) could be quite expensive, since they suggest that ndesv additional back-substitution
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solutions would need to be obtained in the design sensitivity following each time step, where
ndesv is the number of design variables. For topology optimization, ndesv can be quite large,
suggesting much computational e�ort. The proposed implementation requires solving only for the
adjoint displacement �eld at each time step, which is much more computationally e�cient.

Remark 3.4. Force-controlled structural analysis boundary value problems for structures with
elastic-perfectly–plastic materials are potentially ill-posed. While such problems can be solved with
extra caution required, the strain energy FE is not a convergent quantity as the limit capacity of
the structure is reached. An alternative generalized compliance measure which may be of more
value in such problems is the complementary strain energy FC(T )≡

∫ T
t0

∫

 S
U : �̇ d
S dt.

3.3.2. Generalized compliance DSA for displacement-loaded structures. As an alternative to
force-loaded structures, it is sometimes more useful to consider loadings due to the application of
prescribed non-vanishing displacements g to the structure at a subset of nodes {ng} comprising the
mesh. Such nodes need not necessarily lie on the external boundaries of 
S, and the associated
displacement �eld is simply g=

∑
E∈{ng} NE(X) · gE , where gE are applied nodal displacements.

For structures subjected to displacement controlled loading, the incremental energy stored in the
structure due to the incremental work done by the applied displacements for the (n + 1)th time
step can be written as

(�FE)n+1 =
∫ tn+1

tn

∫
�g
n · � · ġ d�g d� (35a)

=
∑

E∈{ng}
�gEn+1 ·

[
1
2

∫

 S

BTE : (�n + �n+1) d
S

]
(35b)

=
∑

E∈{ng}
�gEn+1 · (f intE )n+1=2 (35c)

=
∫

 S

�Ugn+1 : �n+1=2 d
S (35d)

In the preceding expression, {ng} represents the set of nodes in the mesh discretization of 
S at
which the prescribed displacements are applied, and at the Eth node in this set, �gEn+1≡ gEn+1−gEn .
Also, �Ugn+1≡

∑
E∈{ng} BE · �gEn+1: Since �Ugn+1 is fully prescribed, the total design gradient of

the incremental strain energy takes the form

d(�FE)n+1
db

=
∫

 S

�Ugn+1 :
d�n+1=2
db

d
S =
∑

E∈{ng}
�gEn+1 ·

d(f intE )n+1=2
db

(36)

For the case of general, inelastic materials, expressions for d�n=db and d��n+1=db follow from (25).
For general classes of materials, it will thus be necessary to compute and store both d�=db and
du=db in some elements and at the prescribed essential boundary condition nodes. For certain
classes of materials, however, this will not always be necessary, as is demonstrated in the two
special cases treated below.
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3.3.2.1. Special case 1: linear elastic materials. In structures comprised entirely of linear elastic
materials, �n+1=2 is path independent and can thus be expressed directly as �n+1=2 =E(b) : Un+1=2
where E(b) represents the e�ective elasticity tensor of the mixture. Accordingly, the derivative
expression (36) reduces to

d(�FE)n+1
db

=
∫

 S

�Ugn+1 :
(
@�n+1=2
@b

+ E :B · dun+1=2
db

)
d
S (37)

Direct di�erentiation of the state equation rn+1=2 = 0 (as opposed to the incremental state equation)
provides

dun+1=2
db

=−K−1 ·
∫

 S

BT :
@�n+1=2
@b

d
S (38)

Usage of this expression in (37) and simplifying yields

d(�FE)n+1
db

=
∫

 S

(�Ugn+1 + U
a
n+1) :

@�n+1=2
@b

d
S (39)

where Uan+1≡
∑

A∈{n−ng} BA · (uaA)n+1 and where

(uaA)n+1≡−K−1 ·
∫

 S

BTA :E : �U
g
n+1 d
S (40)

plays the role of an adjoint displacement vector. For linear elastic structures, there is thus no need
to explicitly compute or store either du=db or d�=db.

3.3.2.2. Special case 2: inviscid elastoplastic materials. Two ways to implement generalized
compliance design sensitivity analysis for structures comprised entirely of elastic-perfectly–plastic
materials will be briey discussed. For both methods, it is vital to note that the stress �n+1=2 is
path dependent and the stress update is of the form ��n+1 =��n+1(b;�Un+1):
The �rst implementation is based on (36)1 whereas the second is based on (36)2. For the �rst

case, the full design gradient of the stress term in (36)1 is written as

d�n+1=2
db

=
d�n
db

+
1
2
@(��n+1)
@b

+
1
2
Cn+1 :B · d(�un+1)

db
(41)

where it is assumed that d�n=db has been stored and is available where required. Taking the full
design gradient of the incremental state equation (�rn+1 = 0) we obtain

d�un+1
db

= − [Kn+1]−1 ·
∫

 S

BT :
@(��n+1)
@b

d
S (42)

Substitution of this expression into (36)1 and simplifying yields

d(�FE)n+1
db

=
∫

 S

[
�Ugn+1 :

d�n
db

+
1
2
(�Ugn+1 + U

a
n+1) :

@(��n+1)
@b

]
d
S (43)

where Uan+1 =B · uan+1 in which uan+1 plays the role of an adjoint displacement vector obtained as

uan+1 =−[Kn+1]−1 ·
∫

 S

BT :Cn+1 :�Ugn+1 d
S (44)
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Following the update of the strain energy increment by (43), the full design gradient of the stress
(d�n+1)=db must be updated in those �nite elements which have nodes on �g (or those elements
in which �Ug does not vanish). The form of the stress design gradient update for usage in DSA
during ensuing time steps is as follows:

d�n+1
db

=
d�n
db

+
@��n+1
@b

+ Cn+1 :B · d(�un+1)
db

(45)

Alternatively, the second method, rather than computing d�=db, computes and stores f int=db at
the essential boundary condition nodes. Utilizing (41) and (42) one can obtain at the Eth node
the full design gradient of the increment to ith component of the internal force vector as

d(�fintEi )n+1
db

=
∫

 S

ei · BTE :
@(��n+1)
@b

d
S + (uaEi)
T
n+1 ·

∫

 S

BT :
@(��n+1)
@b

d
S (46)

where in this case,

(uaEi)n+1 =−[Kn+1]−1 ·
∫

 S

BT :Cn+1 :BE · ei d
S (47)

plays the role of a dimensionless adjoint displacement vector ∈<neq, and ei is a unit vector in
the ith coordinate direction. After updating the design gradient of the strain energy functional by
(36)2, the design gradient of the internal force at essential boundary condition nodes are updated
for usage in DSA at subsequent time steps.

Remark 3.5. When the structure is displacement-loaded at only a few nodes, the apparent
advantage lies with the second approach in that it takes less memory to store the design gradient
of the internal force vector at the applied non-vanishing displacement nodes E ∈{ng} than to store
d�=db at the integration points in those elements having nodes on �g.

4. VOIGT AND REUSS MIXING RULE ALGORITHMS

4.1. Overview of proposed framework

Many commercial and research �nite element codes today have wide assortments of material
model libraries including for example elasticity, elastoplasticity, viscoelasticity, viscoplasticity, con-
tinuum damage mechanics, endochronic models, and numerous others. The proposed Voigt and
Reuss mixing rule integration algorithms developed below are potentially attractive in that they hold
the possibility of enabling general purpose FEM codes to use their wide assortment of implemented
material models in structural topology design optimization calculations. A modular framework is
investigated below (Figure 2) in which existing material model numerical implementations are
used with only minor modi�cations in topology optimization calculations.
Displacement-based �nite element operations require stresses � and material tangent operators

C= @(�)�=@(�U) as combined functions of such quantities as strains U; strain increments �U;
strain rates U̇, and internal state variables � which are history dependent. To facilitate the us-
age of a wide range of material models in structural analysis calculations, general purpose FEM
analysis codes update stresses � and internal variables � and compute material tangent operators
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Figure 2. Investigated changes to architecture for implementation of topology optimization in general purpose FEM codes:
(a) standard FEM architecture; (b) modi�ed FEM architecture

C in modular material model libraries (Figure 2(a)). In the proposed continuous topology opti-
mization framework, Voigt and Reuss mixing algorithms are employed as intermediaries between
�nite element routines and material model libraries. The Voigt and Reuss mixing routines algorith-
mically compute incremental constitutive behaviours for multi-material mixtures by enforcing the
respective Voigt and Reuss assumptions. The incremental constitutive behaviours of the mixtures
depend upon the volume fractions of the material phases present, the mixing rule assumption, and
the characteristics of the phases being combined. With this very general approach, broad classes
of materials can be treated, and only minor algorithmic changes are required to �nite element
operations and material model libraries. Naturally, it is assumed that working constitutive model
implementations exist a priori for the materials whose topological layout is being designed on the
global structural scale.
The problem of integrating rate constitutive models for individual inelastic solids has received

extensive treatment in the literature in the past two decades, as for example in the case of small
strains in Ref. 38–41. Here, our goal is to extend such works to the task of obtaining the integrated
constitutive behaviour of mixtures of materials. The relatively standard problem of integrating
general inelastic rate constitutive equations for a generic material phase A within a displacement
FEM framework can be stated as follows: On the time interval of interest [0; T ]⊂<, it is assumed
that at time tn the strain UA, stress �A and internal state variables �A at a �xed material point X
are known quantities; that is {UAn ; �A

n ; �
A
n } are known at time tn. The incremental displacement

�eld �un+1 :
S→<3 over the time step [tn; tn+1] is assumed to be given. The problem of interest
is thus to update the known quantities {UAn ; �A

n ; �
A
n } from the end of the previous time step to

their values {UAn+1; �A
n+1; �

A
n+1} at tn+1 in a fashion consistent with appropriate rate constitutive

equations. Within a displacement �nite element formulation, the problem is generally treated as
strain driven in that the total small strain tensor is exactly updated by the relation

UAn+1 = UAn +�UAn+1 = UAn + B · (�u)n+1 (48)
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The remaining dependent variables {�A
n+1; �

A
n+1} must be updated by integration of the rate equa-

tions for material phase A: The stress increment over the time step for generic material phases
is assumed to be of the form: ��A

n+1 =��
A
n+1

(
�A
n ; UAn ; �UAn+1

)
. In the following subsections, this

generic constitutive update for a single material phase is generalized to the cases of two-phased
Voigt mixtures (Section 4.2) and two-phased Reuss mixtures (Section 4.3).

4.2. The Voigt mixing rule

Using numerical integration algorithms for individual inelastic materials, the Voigt mixing al-
gorithm is naturally straightforward to implement in a displacement FEM setting. For all t ∈ [0; T ]
it is assumed that both material phases in a local mixture share the same history of strain,
UA(X; t)= UB(X; t). The algorithmic stress–strain characteristics of the mixture over a time in-
terval [tn; tn+1] and the strain and design derivatives are presented below in Box 1.

Box 1. Voigt mixing rule algorithm

Given {�A
n ; �

A
n ; UAn ;�Un+1} compute {�A

n+1; �
A
n+1; UAn+1; d��

A

d�U }
Given {�Bn ; �Bn ; UBn ;�Un+1} compute {�Bn+1; �Bn+1; UBn+1; d��

B

d�U }
Assemble the mixture stress as weighted sum of partial stresses:

�n+1 =�A�A
n+1 + �B�Bn+1 (49)

Compute tangent operator of the mixture:

Cn+1 =
d(��)n+1
d(�U)n+1

=�A
d(��A)n+1
d(�U)n+1

+ �B
d(��B)n+1
d(�U)n+1

(50a)

=�ACA
n+1 + �BCB

n+1 (50b)

Compute the explicit design gradient of stress increment:

@��n+1
@�A

=��A
n+1 −��Bn+1 (51a)

@��n+1
@�B

=��Bn+1 −��A
n+1 (51b)

4.3. Reuss mixing algorithm

4.3.1. Integration algorithm. For simplicity, implementation of the Reuss mixing rule is pre-
sented here for the special case of two materials that feature non-softening behaviours, in the
sense of Drucker’s de�nition.42 The materials can be either isotropic, or anisotropic, but if they
are anisotropic, their orientations are not considered to be designable in the present topology frame-
work. Since nonlinear constitutive material behaviours are assumed (linear material behaviours are
recovered as a trivial special case) the constitutive relations of both phases A and B at each
integration point of the design domain 
S are solved incrementally. Thus when global force
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balance convergence is achieved in accordance with equation (17) at the nth time step of the
global analysis problem, we have at each integration point of the structural domain 
S a col-
lection of equilibrium stresses, strains, and internal state variables associated with both material
phases: (�An ; UAn ; �An ); (�Bn ; UBn ; �Bn ). At a given integration point X in the body, the global incre-
mental displacement vector �un+1 gives rise to a total strain increment as by equation (48). The
objective of the Reuss mixing algorithm is to increment the stresses, strains and internal variables
for the two material phases A and B so that the Reuss mixture constraints are satis�ed:

�Un+1 =�A�UAn+1 + �B�UBn+1 (52a)

0= �A
n+1 − �Bn+1 (52b)

The �rst constraint (52a) simply requires that the volume fraction weighted strain increments in
the respective material phases sum to the total strain increment, while the second constraint (52b)
requires that both material phases at a �xed point satisfy the uniform stress requirement. In simple
terms, the total strain increment �Un+1 must be decomposed into individual strain increments
�UAn+1 and �UBn+1 so as to satisfy the uniform stress requirement. For general constitutive material
behaviours (other than linear elasticity) the satisfaction of these constraints is non-trivial and
requires an iterative solution algorithm.
To begin de�ning this algorithm, a residual function rR for the uniform stress Reuss assumption

is de�ned as

rRn+1 = �
A
n+1 − �Bn+1 (53)

and an index i is introduced to keep count of the iterations required to satisfy (52a) and (52b).
Linearization of the residual function rR (53) allows for

rRn+1
:= rRn +

d�rRn
d(�U)n

: �Un+1 (54a)

= 0+
d�rRn
d(�UA)n

:
d(�UA)n+1
d(�U)n+1

:�Un+1 +
d�rRn
d(�UB)n

:
d(�UB)n+1
d(�U)n+1

:�Un+1 (54b)

=CA
n : �UAn+1 − CB

n : �UBn+1 (54c)
:= 0 (54d)

That rRn =0 was assumed in (54b) follows from the assumption that the constraint (52b) was
satis�ed in the iterations at the nth time step. To obtain a good starting strain increment �Un+1
decomposition among the material phases, incrementally elastic behaviour for both material phases
is initially assumed in the (n+ 1)th step. Accordingly, equation (54) reduces to:

EA : �UAn+1 =EB : �UBn+1 (55)

where EA and EB are incremental elastic constitutive tensor for materials A and B, respectively.
Combining (52a) and (55) permits the partitioning of the total strain increment into two elastic
strain increments that satisfy both (52a) and (52b):

�UA;0n+1 = [�BEA + �AEB]−1 :EB : �Un+1 (56a)

�UB;0n+1 = [�BEA + �AEB]−1 :EA : �Un+1 (56b)
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The material strain increments �UA;0n+1 and �U
B;0
n+1 thus provide reasonable �rst guesses for the

partitioned strain increments in materials A and B, respectively, based on the assumption of
incremental elasticity. If either of the materials has an inelastic response over the strain increment,
the uniform stress requirement (52b) will be violated. In this case, the Newton’s Method procedure
outlined in Box 2 is used to iteratively solve for the partitioning of the total strain increment �Un+1
to satisfy (52a) and (52b) for inelastic materials. Upon obtaining convergence in Box 2, the �nal
stress update is performed.

4.3.2. Di�erentiation of the mixing rule. Within the context of the combined analysis and
design optimization problem, it is necessary to take both the strain and volume fraction derivatives
of the proposed integration algorithm. The strain derivative gives the so-called ‘consistent tangent
operator’, while the design derivative gives what will be called the ‘stress design gradient’.

Box 2. Newton’s method iterations for Reuss mixing rule

i=0
Solve for initial strain sub-increments �UA;0n+1 and �U

B;0
n+1 by (56).

Compute:

�A; in+1 = �
A;i
n+1(�

A
n ; UAn ; �

A
n ;�U

A; i
n+1) (57)

�B; in+1 = �
B; i
n+1(�

B
n ; UBn ; �

B
n ;�U

B; i
n+1) (58)

rR; in+1 = �
A; i
n+1 − �B; in+1 (59)

If ‖rR; in+1‖6 TOL, Then Convergenced Achieved, Exit.
Otherwise:

�(�UA; in+1) = [�BCA + �ACB]−1 : −�Br
R; i
n+1 (60)

�(�UB; in+1) = [�BCA + �ACB]−1 : +�Ar
R; i
n+1 (61)

�UA; i+1n+1 = �UA; in+1 + �(�U
A; i
n+1) (62)

�UB; i+1n+1 = �UB; in+1 + �(�U
B; i
n+1) (63)

i = i + 1 (64)

Return to (57)

4.3.3. Consistent tangent operator. Upon having solved for the partitioning of the �xed strain
increment �Un+1 that satis�es (52a) and (52b) for the (n+1)th time step through the algorithm
in Box 2, the next task is to linearize the constraint (52b) about the converged state for a di�erent
strain increment which will be called �Un+�. Doing so at a typical integration point thus gives:

rRn+�
:= rRn+1 +

@rRn+1
@(�UA)n+1

:�UAn+� +
@rRn+1

@(�UB)n+1
:�UBn+� (65a)

:= CA
n+1 :�UAn+� − CB

n+1 :�UBn+� (65b)
:= 0 (65c)
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Clearly, the new strain increment will also have to satisfy the partitioning constraint

�Un+�=�A�UAn+� + �B�UBn+� (66)

Combining (65) and (66) thus provides linearized estimates of �UAn+� and �UBn+�:

�UAn+�= [�BCA
n+1 + �ACB

n+1]
−1 : CB

n+1 : �Un+� (67a)

�UBn+�= [�BCA
n+1 + �ACB

n+1]
−1 : CA

n+1 : �Un+� (67b)

The predicted stress increment consistent with linearization of the Reuss mixing algorithm stress
update is, thus,

��n+�=CA
n+1 :�UAn+�=CB

n+1 :�UBn+� (68)

Di�erentiation of this expression with respect to �Un+�, employing (66), and setting �=1 thus
gives the consistent tangent operator for the Reuss mixing rule algorithm:

d(��n+1)
d(�Un+1)

:= CA
n+1 :

d(�UAn+1)
d(�Un+1)

=CB
n+1 :

d(�UBn+1)
d(�Un+1)

(69a)

= CA
n+1 : [�BCA

n+1 + �ACB
n+1]

−1 : CB
n+1 (69b)

= [�A(CA
n+1)

−1 + �B(CB
n+1)

−1]−1 (69c)

Symmetry of this operator (69) is contingent upon symmetry of the consistent tangent operators
CA
n+1 and C

B
n+1 of both material phases.

4.3.4. The stress design gradient. In the design sensitivity calculations presented in Section 3.3
it is necessary to compute @��=@b which in a given element at the generic (n+1)th time step,
corresponds to computing either @��n+1=@�A if �A is taken to be the independent element design
variable, or @��n+1=@�B if �B is taken to be the independent element design variable. (In these
calculations, the displacement and strain �elds are held �xed.) In the following, �A is taken as
the independent variable and the dependent variable is obtained simply as �B=1− �A.
It is assumed that the stress update algorithms for materials being treated at the (n+1)th time

step are of the general form

��An+1 =��
A
n+1

(
�An ; UAn ; �UAn+1

)
(70a)

��Bn+1 =��
B
n+1

(
�Bn ; UBn ; �UBn+1

)
(70b)

which encompasses elasticity, viscoelasticity; elasto-plasticity; visco-plasticity; and numerous other
forms of material constitutive models. Dealing �rst with the partial design derivative of the stress
for material phase A, we have

@��An+1
@�A

=YA
n+1
@�An
@�A

+ ZA
n+1

@UAn
@�A

+ CA
n+1
@�UAn+1
@�A

(71)

where

YA
n+1≡

@��An+1
@�An

; ZA
n+1≡

@��An+1
@UAn

and CA
n+1≡

@��An+1
@�UAn+1
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It should be noted that CA
n+1 is simply the consistent tangent operator from the integration algorithm

for material A, whereas YA
n+1 and Z

A
n+1 are new matrix operators which must be returned from

the constitutive model routines. At the (n+1)th time step, following the stress update to obtain
�An+1, the �rst two terms on the right-hand side of (71) can be calculated directly as

QA
n+1 =Y

A
n+1
@�An
@�A

+ ZA
n+1

@UAn
@�A

(72)

which permits re-writing (71) in the abbreviated form

@��An+1
@�A

=QA
n+1 + C

A
n+1
@�UAn+1
@�A

(73)

By analogy, for material phase B

@��Bn+1
@�A

=QB
n+1 + C

B
n+1
@�UBn+1
@�A

(74)

where

QB
n+1 =

@��Bn+1
@�Bn

@�Bn
@�A

+
@��Bn+1
@UBn

@UBn
@�A

(75)

In the computation of QA
n+1 and Q

B
n+1 it is assumed that @�n=@�A, @UAn =@�A and @UBn =@�A were

computed and stored at the nth time step and are thus available in the operations of (72) and (75).
The remaining task is now to compute @�UAn+1=@�A and @�UBn+1=@�A. This is accomplished

by taking the partial derivatives of the incremental strain decomposition equation (52a) and the
uniform stress condition (52b) to obtain

@�UAn+1
@�A

= [�BCA
n+1 + �ACB

n+1]
−1[�B(QB

n+1 −QA
n+1) + C

B
n+1(�UBn+1 −�UAn+1)] (76a)

@�UBn+1
@�A

= [�BCA
n+1 + �ACB

n+1]
−1[�A(QA

n+1 −QB
n+1) + C

A
n+1(�UAn+1 −�UBn+1)] (76b)

The stress design gradient for the local mixture can then be calculated by either (73) or (74).
Since at the generic (n+1)th time step the stress derivative for the Reuss algorithm utilizes

@UAn =@�A, @UBn =@�A and @�n=@�A, these quantities must be incremented and stored each time
step. For example, at the (n+1)th time step one must update the strain partial derivatives for both
phases by the relations:

@UAn+1
@�A

=
@UAn
@�A

+
@�UAn+1
@�A

(77a)

@UBn+1
@�A

=
@UBn
@�A

+
@�UBn+1
@�A

(77b)

These quantities are then stored at all integration points in the mesh of 
S for usage in sensitivity
analysis at subsequent time steps.
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4.4. Hybrid Voigt–Reuss mixtures

For certain classes of material behaviours, speci�cally elastic, perfectly-plastic behaviours, the
pure Reuss mixing can feature a stress discontinuity at �A=1:0 if phase A is taken to be the
stronger of the two materials. For this class of materials, and perhaps others, it is better to use
hybrid Voigt–Reuss mixtures to avoid stress discontinuities in mixture behaviours. One simple way
to hybridize the Voigt and Reuss mixing rules is to treat the local mixtures as having a volumetric
fraction � that behaves in accordance with the Voigt mixing rule and a volumetric fraction 1− �
that behaves in accordance with the Reuss mixing rule. The assumption is that both partitions of
the hybrid mixture would have the same strain. Accordingly, the e�ective stresses and strains of
the hybridized Voigt–Reuss mixture are

U= UVoigt = UReuss (77)

�= ��Voigt + (1− �)�Reuss (78)

There are numerous options on how one can treat the partitioning fraction �. Here, it is proposed
that � be treated as follows:

�=
{
�0 06�A6�break
�0 + (1− �0) (�A−�break)

(1−�break) �break ¡ �A6 1

}
(79)

where �0 ∈ [0; 1] and �break ∈ (0; 1) are speci�ed parameters that permit the designer/analyst to
control the behaviour of the mixture.

5. SENSITIVITY ANALYSIS RESULTS

The intent of this section is to verify the consistency between the proposed design sensitivity
algorithms presented in Section 3.3 and the structural analysis algorithms presented in Section 3.2
combined with the mixing rule algorithms presented in Section 4. This is accomplished by per-
forming incremental structural analysis computations on a simple structural domains 
S separately
involving: linear elastic materials; elastoplastic materials; and viscoelastic materials. The design
gradients of non-linear energy-type functionals are then computed using the sensitivity analysis al-
gorithms presented in Section 3.3 and compared against very accurate design gradients computed
by �nite di�erence methods.

5.1. Material models employed

Due to the well-posedness of displacement–loaded structural problems, the design sensitivity
algorithms of Section 3.3 are here veri�ed on a number of inelastic displacement–loaded contin-
uum structural problems. For simplicity, the material models employed in the following design
sensitivity calculations are con�ned to: linear isotropic elasticity; elastoplasticity coupling linear
isotropic elasticity with a simple von Mises yield criterion; and standard linear solid viscoelasticity.
For the linear elastic materials, the Lam�e moduli used for materials A and B are, respectively,
�A=1·263E11, �A=1·18E11 and �B=1·263E5, �B=1·18E5. For the elastoplastic design sen-
sitivity tests, the material moduli for the solids are as listed above, while the respective von Mises
yield strengths are YA=1·0E9 and YB=1·0E3. For the viscoelastic DSA computations, the rate
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Table I. Material parameters used in viscoelastic DSA
tests

Parameter Phase A Phase B

k1 1·238E10 2·000E08
k2 1·238E07 2·000E05
k3 1·000E04 1·000E02
�1 1·130E10 1·200E08
�2 1·130E06 1·200E05
�3 1·000E04 1·000E02

form of constitutive equations employed are:

[E1 + E2] : U̇+ E1 : �−1 :E2U= �̇ + E1 : �−1 : � (80)

where E1 and E2 are linear isotropic elasticity tensors and � is a linear isotropic viscosity tensor:

E1 = k11⊗ 1+ �1Idev (81a)

E2 = k21⊗ 1+ �2Idev (81b)

� = k31⊗ 1+ �3Idev (81c)

in which k1 and k2 are bulk moduli, �1 and �2 are shear moduli, while k3 is a bulk viscosity and
�3 a shear viscosity. For the viscoelastic design sensitivity analysis computations that follow, the
material parameters for phases A and B are listed in Table I. The non-linear, or inelastic material
models employed were implemented with backward Euler integration algorithms and consistent
tangent operators for usage in design sensitivity analysis.

5.2. Sensitivity analysis results

For the sensitivity analysis tests to be performed, the structural domain 
S, its mesh resolution,
and the applied displacement loading are shown below in Figure 3. For simplicity, the domain
is discretized into only four elements, and a symmetrical displacement loading is applied. Design
gradients of the strain energy compliance functional de�ned by equation (19) are computed in
elements 2 and 4 of 
S. The design gradients are computed alternately using the DSA algorithms
of Section 3, and by accurate �nite di�erence calculations using the IDESIGN optimization program43.
The results are presented below in Table II. Due to the high accuracy of �nite di�erence design
gradients presented, the small di�erences between the DSA algorithm gradients and the �nite
di�erence gradients are attributed to approximational errors in the DSA algorithms associated with
consistent linearization of non-linear problems. For the results presented below, each element of
the structural domain contains a two-phased mixture of materials A and B (�A=�A=0:50). The
structure is displacement–loaded separately for the cases where the materials are: linear elastic;
elastoplastic; and viscoelastic. For each of the three material types considered, the mixture is �rst
treated using the Voigt assumption and second using either the Reuss assumption or the hybrid
Voigt–Reuss assumption.
The design sensitivity results of Table II show that for the class of problems treated here, the

design gradient expressions presented in Section 3 agree with the nearly exact design gradients
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Figure 3. Coarse FEM mesh used to verify incremental DSA algorithms. The mesh is loaded by applying a vertical
displacement at node #8

Table II. Compliance design gradients for displacement–loaded structure

DSA algorithm Finite di�erence

Description∗ Element #2 Element #4 Element #2 Element #4

Linear elastic materials
Voigt −1·0280E9 −1·9904E9 −1·0279E9 −1·9903E9
Reuss −4·1120E3 −7·9615E3 −4·1121E3 −7·9621E3

Elasto-plastic materials
Voigt −5·8105E8 −1·3441E9 −5·8752E8 −1·3376E9
Voigt–Reuss† −5·9695E4 −1·3750E5 −5·9600E4 −1·3525E5

Visco-elastic materials
Voigt −5·2883E8 −1·0470E9 −5·2861E8 −1·0472E9
Reuss −2·1187E7 −4·1753E7 −2·1119E7 −4·1824E7
∗Each test was performed in ten equal-displacement load steps

a. The linear elastic and elastoplastic tests were performed by applying a displacement of 0·25 over ten
load steps

b. The viscoelastic tests were performed by applying a displacement of 2·5 over a time interval [0,2·5E-5]
† �0 = 0·0001, �break = 0·95

computed by �nite di�erence methods to within 2 per cent. For realistic topology design opti-
mization problems involving a large number of design variables, computation of design gradients
by �nite di�erence methods is prohibitively expensive. Hence, the DSA methods veri�ed here
represent an e�cient means of obtaining design gradient information of reasonably high accuracy.
The agreement between the ‘exact’ and computed design gradients in Table II also demonstrates
the consistency between the structural analysis techniques, wherein mixtures of general materials
reside throughout the structural domain and are treated using the Voigt and Reuss incremental
mixing algorithms, and the proposed design sensitivity techniques.
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Figure 4. (a) Displacement-controlled strength optimization problem, with initial design state b0 = 1·0; (b) Solution ob-
tained with a pure Voigt formulation (�= − 7·70E2); and (c) Solution obtained with a hybrid Voigt–Reuss formulation

(�= − 7·69E2)

5.3. Strength optimization of a Von Mises elastoplastic structure

While topology optimization has been widely used to design structures for high sti�nesses, the
basic techniques have not been widely applied to strength optimization of continuum structures.
With extended topology optimization frameworks of the type developed herein, such important
classes of problems can begin to be explored. To demonstrate, the proposed framework is tested on
an inelastic application involving the strength optimization of a relatively simple structure. A simply
supported structural domain 
S is subjected to monotonically applied, small vertical displacement
loading applied as shown in Figure 4(a). At the peak displacement loading which is achieved in
twenty load=time steps, (�=L=5× 10−4, where L is the span of the structure between supports), the
structure has reached the limit of its resistive capacity. That is, further displacement load increments
do not create further incremental resistance on the part of the structure. This two-material problem
involves �nding the optimal placement of an elastoplastic solid phase and a void phase. The
solid phase, which is isotropic with elastic moduli �solid = 1·263× 1011, �solid = 1·18× 1011 and
a von Mises yield strength Ysolid = 106, initially �lls the design domain 
S. The void phase is
treated as a highly compliant, linearly elastic solid with �void = 10−6�solid, �void = 10−6�solid. The
structural domain 
S is discretized into 512 bilinear continuum �nite elements. To avoid mesh-
locking associated with isochoric elastoplastic deformation the B-bar formulation of Hughes is
employed.44 These computations were performed with the mesh �ltering methods described in
Reference 18 to avoid potential problems with checkerboarding solutions.
The topology design optimization problem is performed to maximize the strain energy � in the

structure [equation (12)] under the applied displacement loading, subject to a 50 per cent global
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volume fraction constraint on the solid phase. Formally, the optimization problem is

min
b

−�(b; u(b))=−
∫ T

0

∫
�g
n · � · ġ(�) d�g d� subject to (82a)

H= 〈�solid〉 − 0·5060 (82b)

and

r(b; u(b))= 0 on 
S (82c)

This problem was solved using an SQP optimization algorithm with line searching43. The termi-
nation criteria were feasibility and satisfaction of the �rst-order optimality condition:∥∥∥∥−d�db + �dHdb

∥∥∥∥6TOL (83)

where � is the Lagrange multiplier associated the volume fraction constraint and TOL is a con-
vergence parameter.
Two test computations were performed. In the �rst, which used the pure Voigt formulation

(�=1), the design achieved is that shown in Figure 4(b). Since Voigt mixtures are very sti� and
strong, the optimal solution, obtained in 24 iterations, features a layout design making extensive
usage of mixtures. To achieve a sharp, nearly discrete, and interpretable solution to this prob-
lem, it was solved a second time using a penalized hybrid Voigt–Reuss formulation (�0 = 0·001;
�break = 0·95). The resulting topology design is interpretable and nearly discrete (Figure 4(c)) and
was obtained in 34 design optimization iterations.

5.4. Strength optimization of Drucker–Prager elastoplastic structure

In many cases, the topology optimization of a structure for high sti�ness in the elastic range of
behaviour also optimizes the ultimate strength of the structure in the regime of inelastic material
behaviour. There are also many cases, however, where designs optimized for minimal elastic com-
pliance will di�er substantially from those optimized for strength. For example, many construction
materials such as concrete and masonry have similar sti�nesses in tension and compression, but
show much greater strength in compression than in tension. One classical way to model such asym-
metrical strength characteristics is with Mohr–Coulomb and=or Drucker–Prager-type elastoplastic
material models. In the simple example below, a displacement load (�=L=5·0×10−5) is applied to
a structure in twenty load steps. The structure is to be designed with a tension-weak=compression-
strong material. The optimization problem is to design an optimal structure that can support the
applied load in tension, compression, or some combination of both (Figure 5(a)). To show the
di�erence between the linear elastic solutions and the elastoplastic solutions, the problem is solved
�rst as a structural sti�ness optimization problem, and secondly as a strength (or generalized sti�-
ness) optimization problem. To assure the necessary smoothness and continuous di�erentiability
of the material models, a Drucker–Prager elastoplasticity model with a circular tension cap and
implemented with a fully implicit integration algorithm was employed to model the solid ma-
terial (Figure 5(b)). The basic formulation of the problem is virtually identical to that of the
preceding example with the exception that the structural domain, boundary conditions, and ma-
terial behaviours are di�erent. These topology design computations were performed without any
methods to control possible checkerboarding solutions.
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Figure 5. (a) Restraint and loading conditions on a fully designable structural domain 
s to which an applied downward
displacement is applied as shown; (b) Drucker–Prager elastoplasticity model which features strong compression and weak
tension behaviours. In the model, S denotes the deviatoric stress tensor, and I1 the trace of the stress tensor. Material

values used in the computation are: �=1·26eE11; �=1·18E11; c=1·0E6; �=14◦

Figure 6. (a) Voigt elastic compliance minimization problem (�=9·07E1); (b) Hybrid (�=0·05) elastic compliance
minimization problem (�=8·70E1); (c) Voigt elastoplastic compliance minimization problem (�=7·70E3); (d) Hybrid
(�=0·05; �break = 0·95) elastoplastic compliance minimization problem (�=6·90E3); (e) Penalized Voigt elastoplastic
compliance minimization problem (�=6·53E3); (f) Hybrid (�=0·05; �break = 0·95) elastoplastic compliance minimization

problem (�=6·95E3)

The Voigt and hybrid Voigt–Reuss solutions to the elastic compliance minimization problem
are shown in Figure 6(a) and 6(b). Since in the elastic regime of behaviour the material features
symmetrical tension and compression behaviours, the elastic solution allows the structure to support
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the applied displacement load in both tension and compression. When the applied load is made
large enough to take the structure to its limit capacity, however, the optimal structure supports
the load primarily in compression, since the material is stronger in compression. Thus an arch
structure, as opposed to a suspension structure, is constructed on the bottom half of the structural
domain. The Voigt solution is shown in Figure 6(c) and the hybrid Voigt–Reuss solution in
Figure 6(d). Both solutions feature signi�cant regions of grey left in the optimal design. To
obtain a discrete �nal design, the optimization processes are continued with the introduction of an
explicit constraint to eliminate intermediate volume fractions: 〈�solid(1− �solid)〉60·01. The �nal
designs are shown in Figures 6(e) and 6(f). Clearly for the material system employed, there is
a signi�cant di�erence between carrying the applied load in tension and compression. Since the
proposed topology formulation can take detailed account of material constitutive behaviours, it
rightly designs the optimal structure as a compression arch.

6. SUMMARY

A new formulation of the continuous structural topology optimization problem has been proposed
and developed in this paper, complete with incremental design sensitivity analysis algorithms for
non-linear applications. The novel formulation di�ers from many other relaxed topology formu-
lations which utilize microstructured composites or mixtures of material phases, and instead uses
amorphous mixtures whose constitutive properties are governed by the classical Voigt uniform
strain and Reuss uniform stress assumptions, and hybrid combinations of the two. The utility of
this alternative topology optimization framework is that it is very general and is directly applicable
to topology design applications involving multiple general elastic and inelastic materials with very
little e�ort required when new materials are employed in topology optimization, once the general
framework (Figure 2(b)) is established.
In Reference 18 the new topology formulation was implemented and tested on linear elastic

structural topology optimization problems involving solid phases and void phases. The charac-
teristics of the Voigt, Reuss and hybrid formulations were studied with respect to uniqueness of
designs, stability, discreteness, and interpretability. Here, the basic Voigt–Reuss topology optimiza-
tion framework has been extended to the class of problems involving the layout of two general,
elastic or inelastic non-softening solids within the con�nes of materially nonlinear, but geometri-
cally linear structural analysis problems. Within this class of problems, the consistency between
the structural analysis formulation, the Voigt and Reuss mixing algorithms, and the design sensi-
tivity analysis methods have been veri�ed for linear elastic materials, elastoplastic materials, and
viscoelastic materials. Further work is now required to extend the framework to incorporate the
treatment of inelastic material mixtures undergoing large strains and rotations.
Beyond the example topology problems solved here, the proposed methods have also been

used with some considerable success in the material layout design of high-strength composites.13

With extended topology design methods of the type developed herein, it is believed that a broad
range of new problems can begin to be productively addressed with topology optimization methods,
including: strength optimization of structural systems; design of structural systems for both sti�ness
and mechanical damping; and numerous others.
Finally, while the framework studied here has been developed using the classical Voigt and

Reuss mixing rules, there are several alternative frameworks which can also treat mixtures of
general inelastic materials as well. Most prominent would be topology optimization frameworks
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based on power-law mixing rules, which can be straightforwardly implemented in much the
same manner as the Voigt formulation and readily used with a wide class of inelastic materials.
It is also worth noting that by introducing several simpli�cations into the homogenization based
topology optimization framework of Bendsoe and Kikuchi1, Mayer et al.45 have employed topo-
logy optimization to solve solid-void layout problems in crash-loaded structural elements involv-
ing a Prandtl–Reuss elastic–plastic material model. Since other frameworks can also treat inelastic
materials, a question that warrants further study is which framework will ultimately prove to be
most robust, computationally e�cient, and versatile with a wide range of inelastic material models.
In this regard, a potential strength of the Voigt–Reuss formulation deriving from its algorithmic
nature is that it can be straightforwardly extended to solve optimal layout problems involving more
than two materials. For example, in the concept design of frame structures for high sti�ness and
high mechanical damping, one might wish to employ topology design to solve for the optimal
placement of a solid linear elastic phase, a viscoelastic damping phase, and a void phase. Further-
more, in the design of composite materials, one might wish to employ topology design to optimize
the microstructural arrangement of N¿2 material phases, which could feature either elastic or re-
sponse behaviours. The Voigt–Reuss formulation is potentially attractive for such extended classes
of topology design optimization problems.
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