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Micromechanically Based
Poroelastic Modeling of Fluid
Flow in Haversian Bone
To explore the hypothesis that load-induced fluid flow in bone is a mechano-transdu
mechanism in bone adaptation, unit cell micro-mechanical techniques are used to
the microstructure of Haversian cortical bone to its effective poroelastic properties. C
putational poroelastic models are then applied to compute in vitro Haversian fluid fl
in a prismatic specimen of cortical bone during harmonic bending excitations over
frequency range of 100 to 106 Hz. At each frequency considered, the steady state h
monic response of the poroelastic bone specimen is computed using complex freq
domain finite element analysis. At the higher frequencies considered, the breakdo
Poisueille flow in Haversian canals is modeled by introduction of a complex fluid vis
ity. Peak bone fluid pressures are found to increase linearly with loading frequenc
proportion to peak bone stress up to frequencies of approximately 10 kHz. Haversian
shear stresses are found to increase linearly with excitation frequency and loading
nitude up until the breakdown of Poisueille flow. Tand values associated with the energ
dissipated by load-induced fluid flow are also compared with values measured exper
tally in a concurrent broadband spectral analysis of bone. The computational mo
indicate that fluid shear stresses and fluid pressures in the Haversian system could,
physiologically realistic loading, easily reach the level of a few Pascals, which have
shown in other works to elicit cell responses in vitro. © 2003 American Institute
Physics. @DOI: 10.1115/1.1535191#

Keywords: Bone Adaptation, Fluid Flow, Mechano-Transduction, Poroelasticity,
mogenization, Unit Cell Analysis, Complex Finite Element Analysis
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Introduction and Motivation
Bone adaptation is a well-recognized phenomenon in wh

human and/or animal bones slowly add or lose mass and
their form in response to alterations in the normal mechan
history. Despite the fact that bone adaptation is a well-recogn
phenomenon, the specific mechanical stimuli that trigger, sus
and terminate bone adaptation are not presently well characte
or understood. Cyclic loading of bone over and above norm
homeostatic stimulus clearly alters the microscale environmen
which osteocytes~cells postulated to sense mechanical signa!
reside@1,2#. While the macroscopic stress magnitudes and cy
loading frequencies that do produce positive bone adaptation
been identified@3,4# the microscale stimuli to which osteocyte
respond are not yet understood.

Over the past century or more, investigators have posed m
mechanisms for the adaptive response of bone to mecha
stimuli. Perhaps the most well-known was that of Wolff, wh
postulated bones adapted to principal tensile and compres
stresses according to mathematical laws@5#. Many researchers
through the first three-quarters of the 20th century presumed a
direct mechanical stimulus~although often this was more implici
than explicit and did not necessarily exclude underlying mec
nisms of various sorts! @6–15#. More recently, a number of inves
tigators have proposed different chemical, electrical, and mech
cal stimuli to osteocytes deriving from cyclic loading of bon
Some of these stimuli are associated with load-induced fluid fl
in the different pore structures of cortical bone while others

1Corresponding author: Colby C. Swan; 4120 Seamans Center for Engine
Arts; Department of Civil and Environmental Engineering; The University of Iow
Iowa 52242 USA; E-mail: colby-swan@uiowa.edu; Phone: 1~319! 335-5831; Fax:
1~319!335-5660.
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manuscript received, September 2002. Associate Editor: J. D. Humphrey.
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not. Yasuda~1954! @16# and Fukada and Yasuda~1957! @17# in-
troduced the notion that piezoelectrical-phenomena exist in
bone, and Bassett and Becker later hypothesized that piezo
tricity could play a role in bone remodeling@18#. Piekarski and
Munro postulated a chemical mechanism based on the notion
load-induced fluid flow in bone enhances the rate of nutrient s
ply and waste removal to and from osteocytes, thereby provid
a more favorable environment for production of additional bo
mass@19#. The observation of strong electric potential gradients
the vicinity of Haversian canals of cortical bone undergoing d
ferent types of loading added support for electrical mechanis
@20,21#. Subsequently, investigators proposed that the nature
these electrical fields could be explained and attributed to fl
flow in the pores of the hydroxyapatite matrix@22,23# or flow in
the larger canaliculi@24#. Alternatively, it has been proposed th
shearing stresses from the oscillating flow of viscous bone flu
exert stimulatory stresses on the osteocytes or their proce
@25,26#. Still further works have been aimed at determinin
whether or not the fluid pressures in bone fluids during phy
ological dynamic loadings can possibly serve as the stimulu
which osteocytes respond@27,28#.

To test these hypotheses, we need realistic estimates of
flow to ascertain whether experimentally these levels of flow
deed appropriately stimulate bone cells. Since we cannot exp
mentally measure fluid flow at the necessary levels, realistic m
els at the microstructural level are needed. One approach i
create coherent and hierarchical multiple-scale poroelastic mo
for each of the known flow systems. The objective of the pres
work is therefore to establish the foundations of such a model,
confines the work to flow in the Haversian and Volkmann cana
~We intend to extend the computations at finer scales~e.g., canali-
cular systems! in the near future.!

A recent review of bone poroelasticity models by Cowin su
gests that there are many free parameters in isotropic bone

ring
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roelasticity models that must be selected by the analyst@29#. To
some extent, difficult questions and uncertainties pertaining to
lection of model parameters cannot be avoided. In this work,
attempt is made to capture the gross microstructural charact
tics of Haversian bone and to couple this with unit cell micr
structural analysis techniques. Together, these lead to a poroe
model featuring transversely isotropic symmetry. Based on
assumed microstructure of Haversian bone@30#, the effective bone
poroelastic properties are determined. In the current work
lamellar structure of cortical bone matrix is neglected, and
bone matrix is modeled simply as a linear isotropic elastic~and
homogeneous! solid. Similarly, the bone fluid is assumed to be
Newtonian fluid with a constant viscosity and bulk modulus. D
spite these simplifying assumptions, the modeling framework
veloped and proposed here is general enough that more rea
behaviors can subsequently be incorporated.

In the remainder of this article, the basic microstructure a
kinematics of bone matrix and vascular fluid in Haversian bo
are considered. Microscale stresses and strains on the ost
scale are related to macroscopic stresses and strains on a
bone specimen length scale~on the order of a centimeter!. A linear
poroelastic model is proposed to relate averaged micros
stresses to strains, and changes in fluid content. A unit-cell an
sis procedure is used to estimate the coefficients of this poroel
model for specific physical characteristics of the bone. FE
implementation of the poroelastic bone model is then presen
and complex, frequency-domain, poroelastic modeling of cort
bone specimens undergoing forced vibrations is then conside
The dissipated mechanical energy in these vibrations is comp
for comparison to experimental measurements made on hu
cortical bone specimens. The peak computed fluid pressures
shear stresses in the Haversian system are also presented an
cussed. Finally, the limitations and assumptions of the model
discussed, along with their possible impact on the computed
sults.

Unit Cell Analysis of Haversian Bone

Length Scales and Averaging Domains. Haversian bone
~Fig. 1! is formed by arrays of osteons, each having a lame
bone matrix structure, and a Haversian canal running along
approximate central axis. As a first approximation, Havers
bone can be modeled as a linear, isotropic, elastic medium thro
which a periodic array of fluid-filled Haversian canals pass~Fig.
2!2. A macroscopic bone specimen under consideration will
cupy a domainVB in three-dimensional space and can, for si
plicity, be idealized as exhibiting a periodic microstructure in th
the specimen is formed by continuous repetition of the unit c
Vs5P i 51

3 ]0,l i@ , wherel i are the dimensions of the cell. Phys
cally for Haversian bone, the unit cell would be the material str
ture associated with an osteon as shown in Fig. 1. Two dist
length scales will be considered in the present analysis: the b
specimen length scale (,'1-10 cm) and the Haversian/osteon
micro-scalel'100 mm.

A material point in an undeformed unit cellVs is specified by
its local microscale material coordinatesX, while the same point
in the deformed unit cell is located by its spatial microscale co
dinatesx. Similarly, on the bone specimen length scale, the L
grangian and spatial macroscale coordinates of a reference
in VB are denoted, respectively, byY andy. On both micro and
bone specimen scales, displacement vectors relate reference
in the undeformed state to those in the deformed state:

x5X1u~X! microscale; (1a)

y5Y1u~Y! macroscale. (1b)

2The study of Cooper et al.~1966! @30# on canine femur specimens indicates th
Haversian canals are in reality approximately 50% filled with endothelial cells
osteoblasts. The effects of these soft tissues in the Haversian canals are negle
this analysis, although they are discussed subsequently.
26 Õ Vol. 125, FEBRUARY 2003
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In the following, the microscale coordinatesX are employed in
solving unit cell analysis problem to find the effective propert
structure relations of Haversian bone, while the macroscale c
dinatesY are used in structural analysis of macroscopic bo
specimens with dimensionsO(,) much larger than those of the
Haversian/osteonal unit cell. In structural analysis of bone spe
mens, the effective poroelastic properties of Haversian bone
employed.

Haversian bone is considered to be fully saturated, having o
a solid bone-matrix phase and a fluid phase with no air voids. T
respective volume fractions of both fluid and solid phases in
typical unit cellVs are represented as follows:

t
nd
ted in

Fig. 1 Three-dimensional idealizations of Haversian bone. a …

transverse section with square-packed non-overlapping os-
teons; b … transverse section with hexagonally packed, overlap-
ping osteons; c … unit cell for non-overlapping osteons; d … unit
cell for overlapping osteons.

Fig. 2 a … Idealized transverse section through Haversian bone
with lamellar structure neglected and bone matrix treated as
linear, isotropic, homogeneous elastic medium; b … finite ele-
ment mesh of unit cell model with 4% Haversian porosity. To
estimate poroelastic model coefficients, five strain-controlled
tests were performed on this model: „1… undrained «̄11Å0; „2…
undrained «̄33Å0; „3… undrained ḡ12Å0; „4… undrained ḡ13Å0;
and „5… drained «̄11Å0.
Transactions of the ASME
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wsolid5
Vsolid

Vsolid1Vfluid
; wfluid5

Vfluid

Vsolid1Vfluid
(2)

wherewsolid andwfluid sum to unity.

Microscale and Macroscale Bone Kinematics. On the do-
main of the unit cellVs , the micro-scale displacement field in th
bone matrix is denoted byus(X),;XPVs

solid and similarly the
micro-scale displacement field in the Haversian fluid
uf(X),;XPVs

fluid . The micro-scale averages of the solid and flu
velocity fields over their respective portions ofVs are computed:

v̄s5
1

Vsolid
E

Vsolid
s

vs~X!dVsolid
s ; v̄f5

1

Vfluid
E

Vfluid
s

vf~X!dVfluid
s ;

(3)

The total volume-averaged velocity on the micro-scale provi
what is called thetotal velocityof the medium:

v̄~Y!5fsolidv̄
s1ffluidv̄

f (4)

This expression can be rewritten in a more useful form as follo

v̄~Y!5 v̄s1ẇ (5)

in which

ẇ5ffluid~ v̄f2 v̄s!. (6)

Written this way, the average velocity of the medium has t
components: the average velocity of the bone matrixv̄s and the
so-calleddischarge velocityẇ which represents the average rel
tive velocity between the fluid and the bulk medium per unit gro
cross-sectional area, and is an indicator of instantaneous fluid
in the bone.

It can be shown that the net rate of volumetric fluid flow p
gross unit volume into a local region about a macroscopic poinY
represents a rate of change in volumetric fluid-content which
denoted byż and is available from the both the microscale fl
and the macro-scale divergence ofẇ:

ż5
21

V E
Gfluid

n•~vf2 v̄s!dGfluid (7a)

52¹Y•ẇ (7b)

52
]ẇi

]Yi
. (7c)

Under ‘‘very rapid’’ loadings applied to Haversian bone, the
is insufficient time for the fluid in the canals to overcome t
viscous and inertial forces that resist flow, and thusẇ50. Con-
versely, under loadings applied relatively slowly or with suf
ciently ‘‘long duration,’’ there is ample time for the fluid to ove
come viscous and inertial forces that resist flow. However, o
excess fluid pressures have been relieved, flow ceases once
such thatẇ50. The response of bone during rapid loading
which no flow occurs is termedundrained, whereas the respons
of bone in which the fluid carries no excess pressures from
plied loadings, is termedfully drained. These two cases provid
limits between which bone features a response that is part
drained with fluid flow and pressure relaxation occurring.

Microscale and Macroscale Stresses and Strains.The mac-
roscopic strain rate in the bone matrix can be related to the
croscale strain rate field and the macro-scale velocity field as
lows:

«G5
1

V F E
Vsolid

«G sdVsolid1E
Gfluid2solid

1

2
~n^ vs1vs

^ n!dGfluid2solidG
(8a)

5wsolid«G
s1wvoids«G

voids (8b)
Journal of Biomechanical Engineering
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2
~¹Yv̄s1 v̄s¹Y! (8c)

In ~8a! n represents the unit outward normal vector from t
edges of Haversian canals, directed into the bone matrix.

Macroscopic stressess̄(Y) in Haversian bone are simply spa
tial averages of the microscale stresss~X!, which can fluctuate
quite significantly withinVs due to material heterogeneity. Whe
referring to macroscopic stresses, there are at least three poss
ties for describing their apportionment between the fluid and s
phases: the total average stress in the medium at a pointY denoted
s̄(Y); the average stress in the solid bone matrixs̄s(Y); and the
average stress in the fluids̄f(Y). Mathematically, the average
stresses in the matrix and fluid phases are, respectively:

s̄s5
1

Vsolid
E

Vsolid

ss~X!dVsolid ; s̄f5
1

Vfluid
E

V f luid

sf~X!dVfluid ;

(9)

The average fluid pressure p¯f is related to the averaged fluid stre
tensor as:

p̄f52
1

3
tr~s̄f! (10)

The total average stresses at a pointY in Haversian bone are the
volume-weighted sum of the stresses in the fluid and solid pha

s̄5wsolids̄
s1wfluids̄f (11)

which shows that any two of the three average stresses uniq
determine the third.

A PoroElastic Constitutive Model. On the length scale of a
few centimeters, Haversian bone can for most physiological lo
ings be modeled as a linearly elastic poroelastic continuum wh
average stresses, strains and change in fluid content are relat
a Biot-type constitutive model@31,32#. The state of average stres
in the bone specimen about a macroscopic pointY can be quan-
tified by the components of the symmetric averaged stress te
defined in~11!, and the state of average deformation in the m
dium by the six components of the averaged strain tensor defi
in ~8!:

s̄5@s̄11 s̄22 s̄33 s̄23 s̄31 s̄12# (12a)

«̄5@ «̄11 «̄22 «̄33 ḡ23 ḡ31 ḡ12# (12b)

The locally averaged fluid pressure in the medium in the nei
borhood of a macroscale pointY is quantified by p̄f, and the
change in fluid content in that same neighborhood by§. The seven
macroscopic stress variables can be related to the seven m
scopic strain and flow variables through the linear mathemat
relationship below, a variation of which was originally propos
by Biot ~1941! @31#:

F s̄

p̄fG5F C G

GT ZG•F «̄

z G (13)

in which, the terms ofC, a symmetric 636 matrix, comprise the
undrained poroelastic stiffness tensor of fluid-filled bone, andG, a
631 matrix, captures the coupling between change in fluid c
tent and change in total stress, and Z, a scalar, is thestorage
modulusthat denotes the coupling between change in fluid pr
sure and change in fluid content with strain held fixed. The
moduli are generally dependent upon the stiffness propertie
the bone matrix and those of the bone fluid, and also their res
tive microstructural arrangements. An inverse expression of
same poroelasticity model is

F «̄

z G5F S B

BT A
G•F s̄

p̄fG (14)
FEBRUARY 2003, Vol. 125 Õ 27
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In the preceding expression,S is the fully-drained compliance o
the bone-matrix, taking into account the orientation and mag
tude of the Haversian porosity;B relates changes in average flu
pressure to average matrix strains; and A is the storage compli
of the medium. Generally for Haversian bone, the partitioned
roelastic stiffness and compliance operators would be expecte
feature transverse isotropy, due to the quasi-random arrange
of Haversian canals and osteons within the cross-section of a
bone specimen.

Determination of Poroelastic Coefficients by Unit Cell
Analysis. While techniques for experimental measurement
poroelasticity parameters for isotropic media were outlined
cades ago@33# physical measurement of these moduli rema
challenging even today. As a viable alternative, microscale
cell analysis of the stresses and strains in the bone matrix and
Haversian fluid under both undrained and fully-drained conditio
can be used to estimate the constants. This approach has th
vantage that the properties of the bone matrix and the pore flui
well as their microstructural arrangements can be related to
anisotropic effective poroelastic properties. Unit cell analysis
typically performed on composite materials having perio
micro-structures@34–36#. The essential idea is to take the un
cell, or the basic microstructural unit which repeats, and to p
form computational experiments on it, while imposing period
boundary conditions which force the unit cell to behave as i
were still embedded in the periodic medium from which it w
extracted.

The poroelastic model coefficients of~13! can be determined by
performing experiments on the unit cell in both completelyund-
rained and completelydrained modes. In the former, the bon
matrix and the pore fluid move together (ẇ50), and in the latter,
only displacements in the solid bone matrix need to be consid
(p̄f50). Due to the assumed periodicity of the bone’s microstr
ture, deformation of the bone matrix on the osteonal scale sati
a linear-periodic decomposition:

us
„X,Y…5«̄~Y!•X1uper* s~X! (15)

where «̄ is the macroscopic strain tensor defined in~8! and
uper* s(X) is a purely periodic displacement field that repeats in
adjacent unit cells

In the undrained analysis, no fluid flow occurs, and the unit c
of Haversian bone, as modeled, behaves as a two-phased
solid elastic composite. The objective of undrained unit cell ana
sis is to apply directional loadings to the unit cell, and to study
resulting apportionment of stresses and strains between the
and solid phases.

The generic strain-controlled homogenization problem invol
imposing a displacement fieldu(X)5«̄•X associated with a pre
scribed macroscopic strain tensor«̄ ij on the unit cell. Due to the
heterogeneity of materials and their properties, such a unif
strain field will not lead to a stress-field that satisfies local eq
librium conditions (s ij , j50) on the microscale. The purely per
odic contribution to the displacement fielduper* (X) must therefore
be computed so as to satisfy stress-field equilibrium within
unit cell. Once the equilibrium microscale stress fields~X! and
strain field«~X! are known, the corresponding macroscopic to
stress tensors̄(ij) and the corresponding fluid pressure p¯f(ij) in
response to the applied«̄ ij are computed following~9! and ~10!.
Since under undrained loadings of the unit cellz necessarily van-
ishes, most of the poroelastic stiffness tensor components ca
computed straightforwardly from the undrained analysis. Spe
cally, using the condensed notations of~12! and ~13!

Cij5
s̄ i

( j)

«̄ j
iP$1,2, . . . ,6% jP$1,2, . . . ,6%. (16)
28 Õ Vol. 125, FEBRUARY 2003
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where, using condensed notation,s̄ i
( j) is the resulting ith macros-

cale stress component in the medium due to application of
macroscopic jth strain component. Similarly, the six coefficients
G can be determined as follows:

Gj5
p̄f(j)

«̄ j
jP$1,2, . . . ,6% (17)

where p̄f(j) is the averaged fluid pressure due to application of
jth strain component.

The storage modulus Z is most easily computed using a fu
drained analysis of the unit cell that can be replicated by mode
the Haversian canals as devoid of fluid. In this case, under
applied loading it will be true that p¯f50. Applying any single
strain-controlled loading to the unit cell with a non-vanishin
volumetric component yields the value of Z as:

Z52
Gj«̄ j

z
, no summation on j, and jP$1,2, . . . ,6% (18)

wherez here is simply the averaged volume strain associated w
the fluid cavity, computed for the special case of fully drain
loading from~8b! as:

z5tr~ «̄!2wsolidtr~ «̄s!. (19)

Based on the assumed periodic arrangement of Haversian
nals shown in Fig. 2, the computed poroelastic stiffness coe
cients feature square, orthotropic symmetry. Though not a pa
this work, the computed orthotropic poroelasticity tensor can
converted to a transversely isotropic one by performing an or
tational average of the stiffness coefficients in the transve
X1-X2 plane.

Effective Fluid-Conductivity Properties. The relation be-
tween average fluid velocities~6! and average fluid pressure gra
dients~10! in Haversian bone is governed by Darcy’s Law:

ẇi52kijh,j (20)

where the terms kij comprise the effective permeability tensor
Haversian bone, and h5p̄f2r f(Y•b) is the piezometric pressur
in the medium, wherer f is the mass density of the bone fluid an
b provides the direction and magnitude of gravitational accele
tion acting on the medium. In~20! the spatial derivatives of h@i.e.,
h,j] are computed on the macroscopic scale as opposed to
microscale.

The permeability of Haversian bone can be related to the
crostructure by making the assumption of uni-directional flu
flow in the canals. Assuming that there is a harmonically oscil
ing macroscopic pressure gradient driving oscillatory flow in
given canal, conservation of fluid mass, and the assumption o
incompressible fluid lead to the following governing differenti
equation for flow in the canal:

r2vf91rvf82
ivr f

m
r2vf5

r2h,x
m

(21)

where vf(r,t) is the fluid velocity distribution in the canal, r is th
radial coordinate measured from the center of the canal, x is
coordinate variable along the canal’s axis,r f is the fluid density,v
is the angular frequency of excitation, andm is the viscosity of the
fluid. Biot @32# has shown that the solution to this equation is

vf~r,t!5
ih,x
r fv F I oS i 1/2r

b D
I oS i 1/2R

b D 21G exp~ ivt! (22)

where R is the radius of the cylindrical canal andb
5@m/(r fv)#1/2 is the approximate thickness of the viscous boun
ary layer. Taking the average of the fluid velocity over the cana
cross-section provides the so-calledseepage velocityas follows
Transactions of the ASME
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v̄f~ t!5
ih,x
r fv F2 i 12k

I 1~ i 1/2k!

I o~ i 1/2k!Gexp~ ivt! (23)

wherek5R/b5R@m/(r fv)#21/2. Now, letting v̄f5ẇ1 /ffluid , the
effective permeability of the bone in the direction of the canals
simply

kxx5
wfluid

r fv F2

k

I 1~ i 1/2k!

I o~ i 1/2k!
2 i G (24)

In the preceding equations,I o and I 1 are the modified Kelvin
functions described, for example, in Abramowitz and Stegun@37#.
In general,~24! indicates that the effective permeability und
oscillatory flow is a complex quantity. However, for relatively lo
frequencies withk!1, the effective permeability in the canal d
rection tends toward a real value kxx5ffluidR

2/8m. This recovers
the well-known Scheidegger result valid when flow in the can
is Poisueille@38#. In the analysis that follows, the Haversian c
nals are assumed to be aligned with the X3 axis of the material
coordinate system such that k335kxx . The effective permeabilities
in transverse directions (k11,k22) are determined primarily by
Volksmann canals and typically have about one tenth the ma
tude of that in the longitudinal direction.

Poroelastic Modeling of Haversian Bone

Poroelastic Finite Element Model „Time Domain…. At the
bone specimen scale (,/l)@1, Haversian bone can be modeled
an anisotropic poroelastic medium, with properties as descr
above. Accordingly, the dynamic equilibrium of the bulk poro
medium~both the bone matrix and Haversian fluid! and that of the
fluid relative to the rest of the medium are expressed, respecti
as:

s̄ ij, j1rbj2r ǖj2r fẅj50 (25)

2 p̄f, j1r fbj2Rjiẇi2r f ǖj2
r f

wfluid
ẅj50 (26)

where the range of indices i and j is 1,2,3, and for generality, b
forces per unit massb have been included. In~25! and ~26!, ex-
pressions of the form (* ),i are shorthand for](* )/]Yi and are
thus spatial derivatives on the bone specimen length scale. A
in ~26! the operator denoted Rji is the resistivity tensor of the
medium that is simply the matrix inverse of the permeability te
sor used in~20!.

To facilitate structural analysis for Haversian bone, the mac
scopic continuum equations expressed above can be re-cas
matrix form suitable for finite element implementation. There a
a number of possible numerical implementations of the preced
coupled fluid-solid equations of motion. Here a displacem
implementation is utilized in which the basic unknowns at ea
nodal point in the continuum will be three components of so
displacements, and three components of fluid displacement,
tive to the solid. Hence there are six unknowns, or degree
freedom at each node.

dA5@ ū1 ū2 ū3 w1 w2 w3# (27)

Accordingly, the matrix equations of motion for all degrees
freedom associated with the Ath node in the mesh can be writte
as follows:

MAB
•d̈B1DAB

•ḋB1KAB
•dB5fA

ext (28)

Specific expressions for the different matrix operators are as
lows
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Mim
AB5F E NArNBd imdV E NAr fNBd imdV

E NAr fNBd imdV E 1

wfluid
NAr fNBd imdVG

(29a)

Dim
AB5F 0 0

0 E NARimNBdVG (29b)

Kim
AB5F E Bji

ACjkBkm
B dV 2E Bji

AGjN,m
B dV

2E N,i
AGlBlm

B dV E N,i
AZN,m

B dV
G (29c)

fi
Aext5F E NAnjs̄jidG1E NArbidV

E 2NAnip̄
fdG1E NAr fbidV

G (29d)

In the preceding expressions, NA denotes the shape function ass
ciated with the Ath node in the mesh;BA is the strain-displacemen
operator associated with the Ath node;d im is the Kronecker delta
function; and N,i

A denotes the spatial derivative of NA with respect
to the ith macroscopic coordinate variable. Further details on
derivation of these equations, and the meaning of the individ
terms can be found in Stewart@39#.

Frequency Domain Poroelastic Analysis. Under steady state
harmonic loadings applied to bone specimens, the total and r
tive displacement fields in the bone can be represented as the
parts of a complex harmonic oscillating field as follows:

ū~Y,t !5R$@ ūr~Y!1 i ūi~Y!#exp~ ivt!% (30a)

w~Y,t !5R$@wr~Y!1 iwi~Y!#exp~ ivt!% (30b)

AboveR$ % denotes the real part of a complex variable. An alt
native polar decomposition representation of the real part of c
plex fields is as follows:

ūk~Y,t !5uūk~Y!ucos~vt1uk! (31a)

wk~Y,t !5uwk~Y!ucos~vt1uk
f ! (31b)

where the amplitudes of matrix displacement and relative fl
displacement at a pointY areuūk(Y)u anduwk(Y)u, and the phase
angles of the displacements with respect to the applied harm
loading areuk anduk

f .
With the assumption of a complex displacement field, each

the six nodal unknowns in Eq.~28! can be represented as comple
variable. Under harmonic loading of a bone specimen, the
namic steady state matrix equation becomes, in analogy to
~28!,

@2v2M1 ivD1K #•d5fext. (32)

Thus under harmonic loading applied to the specimen at a
quencyv, the steady state response of the medium is obtained
solving Eq.~32!.

In the complex poroelastic bone model, a complex displa
ment field gives rise to complex stress and strain fields in
bone. The peak value of stored energy in the poroelastic b
model during steady state oscillations is simply the strain ene
in the medium associated with total stresses and strains tha
acting in phase with each other:

Us5E
Vs

1

4
s̄k«̄k@11cos~uk

s̄2uk
«̄ !#dVs (33)
FEBRUARY 2003, Vol. 125 Õ 29
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wheres̄k and «̄k denote, respectively, the absolute values of
kth stress and strain components at a pointY, while uk

s̄ anduk
«̄ are

their respective phase angles. Conversely, the total energy d
pated in the poroelastic bone model per cycle Ud is the irreversible
work done by drag forces in the bone matrix against the flow
vascular fluid. For the complete model, this is computed
follows:

Ud5~pv!2E
Vs

wkRkjwjdVs (34)

In viscoelasticity theory the quantity tand is a useful indicator of
the energy dissipated per radian, normalized by the peak en
stored per cycle@40#. Using the quantities defined in~33! and
~34!, tand is easily computed from its definition

tand5
Ud

2pUs
. (35)

Peak Fluid Pressures and Shear Stresses.Since it has been
postulated that bone cells might be responding to fluid pressur
fluid shear stresses when positive bone adaptation occurs in
junction with a specific loading program, it is useful to compu
both peak fluid pressures and peak fluid shear-stresses from
poroelasticity models. Under harmonic loading, the fluid press
at any pointYPVB will be a complex quantity given simply by
Eq. ~24! when all strains andz are complex. The absolute magn
tude of the complex pressure atY is the peak macroscopic fluid
pressure at that point, and the phase angle of the complex pre
determines the degree to which it is in phase with the app
harmonic loading.

Since the poroelasticity model does not directly provide flu
shear stresses, they must be computed from drag-forces bet
the vascular fluid and the Haversian canal walls. In particular,
drag forces per unit volume of the porous medium exerted by
Haversian fluid on the walls of the Haversian canals are gi
simply by:

Fdrag5R•ẇ (36)

The drag forces per unit volume are created by cumulative s
stresses acting in the Haversian canals, for a fixed volume
cortical bone. Taking into account both the size and volume fr
tion of the channels that blood flows in, the average wall sh
stress in the Haversian canals at a given time and macrosc
locationY is given by the relation:

t~Y!5
iR•ẇiRo

2wfluid
(37)

where Ro is the radius of the Haversian canals,R is the medium’s
resistivity tensor and the inverse of the permeability tensork, and
ffluid the associated volume fraction of the Haversian canals.
der steady-state harmonic loading where complex analysis is
formed, this shear stress will typically be complex, indicating b
its magnitude and phase angle with respect to the excitat
Above, the absolute magnitude of this shear stress is taken.

Results of Poroelastic Computations

Material Properties. In healthy human cortical bone, th
Haversian porosity typically falls in the range of 1-5%, and t
typical Haversian canals have diameters ranging from 10-70mm
@30#. In this study, two different assumptions are made regard
the bone matrix stiffness and Haversian porosity. In assumptio
the collagen-hydroxapatite bone matrix is assumed to hav
Young’s modulus of 11 GPa and a Poisson’s ratio of 0.39, wh
the Haversian porosity is assumed to be 1%, and the mean d
eter of Haversian canals is assumed to be 20mm. In assumption
B, the bone matrix is assumed to have a Young’s modulus o
GPa, a Poisson’s ratio of 0.38, a Haversian porosity of 4%, an
mean diameter of the Haversian canals of 50mm. All of these
30 Õ Vol. 125, FEBRUARY 2003
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values are consistent with the range of accepted values typic
reported in the literature@29#. The in vivo fluid phase in Haversian
bone is blood, whereas that in related experimental studies
Garner et al.@41# and Buechner et al.@42# we model~Section 5!
saline which has a bulk modulus of 2.1 GPa, a vanishing sh
modulus, and a shear viscosity equal to that of water at 20 °C
approximately 1023 Pa•s. The effective poroelastic coefficient
and permeability coefficients for assumed material propertie
and B are presented below.

Using the unit cell finite element analysis model~Fig. 2b!, the
effective poroelastic moduli~in units of GPa! of the model in~13!
have been computed~Table 1!. Here, the longitudinal direction o
the Haversian canals is taken as aligned with the X3 coordinate
axis. The modeled effective poroelastic compliance~14! of bone is
obtained by inverting the effective stiffness as represented in~13!.
Specific compliance values associated with the stiffness co
cients in Table 1 are as shown in Table 2.

For material assumption B, the effective moduli of Table
indicate that when the saturated Haversian bone model is stra
uniaxially in the longitudinal direction in an undrained manner t
resulting pore fluid pressure~in GPa! in the Haversian canals is
25.39«̄33. Conversely, under undrained conditions, transve

Table 1 Computed effective poroelastic moduli for Haversian
bone with material assumptions A and B. All poroelastic moduli
not specified have vanishing values.

Material Assumption A
Ebonematrix511 GPa;nbonematrix50.39; fvoids50.01

Undrained Poroelastic Moduli in GPa „Orthotropic …

C115C22517.33; C125C21510.30; C445C5554.016;
C33519.02; C235C32510.65; C6653.922;

C135C31510.65;
Pore-Pressure Coupling Coefficients in GPa

G15G2526.252; G3525.164;
Storage Modulus in GPa

Z517.21;

Material Assumption B
Ebonematrix512 GPa;nbonematrix50.38; fvoids50.04

Undrained Poroelastic Moduli in GPa „Orthotropic …

C115C22520.06; C125C21512.13; C445C5554.016;
C33520.92; C235C32512.30; C6653.922;

C135C31512.30;
Pore-Pressure Coupling Coefficients in GPa

G15G2526.618; G3525.390;
Storage Modulus in GPa

Z530.63;

Table 2 Computed effective poroelastic compliances for ma-
terial assumptions A and B. All compliances not specified have
vanishing values.

Material Assumption A

Fully Drained Poroelastic Compliances in GPaÀ1
„Orthotropic …

S115S225.1062; S125S2152.03611; S445S555.2810;
S335.09261; S235S3252.03520; S665.3042;

S135S3152.03520;
Pore-Pressure Coupling Coefficients in GPaÀ1

B15B25.001489; B35.002213;
Storage Compliance in GPaÀ1

A5.006957;
Material Assumption B

Fully Drained Poroelastic Compliances in GPaÀ1
„Orthotropic …

S115S225.09262; S125S2152.03349; S445S555.2490;
S335.08683; S235S3252.03297; S665.2550;

S135S3152.03297;
Pore-Pressure Coupling Coefficients in GPaÀ1

B15B25.006974; B35.001034;
Storage Compliance in GPaÀ1

A5.003584;
Transactions of the ASME
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Fig. 3 a … Finite element model of prismatic cortical bone specimen; b … Hav-
ersian canals oriented in alignment with longitudinal axis of specimen; c …

Haversian canals oriented transverse to longitudinal axis of bone specimen.
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uniaxial strain gives a pore fluid pressure of26.62(«̄11 or «̄22).
Pure shear strains in any of the coordinate planes do not give
to any pore fluid pressure.

When a transverse uniaxial compressive stresss̄11 or s̄22 or is
applied to the model~material assumption B!, the change in fluid
content necessary~per unit applied stress! to relieve fluid pressure
is B15B25.006974 GPa21. Alternatively, for compressive
stresses applied in the longitudinal directions̄33, the reduction in
fluid content required to relieve the fluid pressure is3
5.001034 GPa21s̄33. Thus, the model predicts that transver
stresses applied to Haversian bone have the potential to gen
significantly stronger flows in the Haversian system than
stresses applied longitudinally.

For material assumption B, the inverted compliances S11
21

5S22
21 of the model yield a fully drained Young’s modulus of bon

in the transverse direction of 10.8 GPa. In the direction align
with the Haversian canals S33

21511.57 GPa. Since the nomina
value of the bone matrix Young’s modulus associated with ma
rial assumption B is 12 GPa, it is seen that Haversian canals
a 4% volume fraction produce larger reduction in transve
Young’s modulus than in the longitudinal Young’s modulus. Th
result is consistent with results that would be produced by o
micro-mechanical analysis techniques for composite and/or
erogeneous materials.

Under the assumption of Poisueille flow, the absolute hydra
conductivity in the direction of the Haversian canals would be
accordance with Scheidegger’s result, approximately 1
•10213 m2 for material assumption A and approximately 3
•10212 m2 for material assumption B. In transverse directions,
estimated permeability would be about one tenth that in the
gitudinal direction, due to Volksmann canals and also rando
oriented canaliculi. These estimates are actually in quite g
agreement with the measured conductivities of human cort
bone reported by Rouhana et al.@43# which ranged from 1.5
•10213 m2 to 5.7•10213 m2 in the longitudinal direction, and
from 1.3•10214 m2 to 5.5•10214 m2 in the transverse directions
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Time Domain Fluid Pressure Relaxation Behaviors. When
an external mechanical load is applied very rapidly to satura
Haversian bone, both the solid bone matrix and the Havers
fluid initially share the load and thus contribute to the over
stiffness of the medium. If the boundaries of the bone specim
permit drainage, the fluid will flow toward the draining boun
aries, resulting in the dissipation of fluid pressure in the Havers
lumens. As this occurs, the Haversian lumens contract, resultin
a slight stiffness reduction of the bone. Also, as the fluid flows
the boundaries, the work done by viscous drag forces between
fluid and solid phases results in dissipation of mechanical ene
The related phenomena of stiffness relaxation and energy diss
tion associated with fluid flow contribute to the apparent v
coelastic behavior of Haversian bone. Of course, fluid flow
Haversian canals is only one of a number of dissipative viscoe
tic mechanisms in bone. Others include the inherent viscoela
ity of the cement-line material between osteons, molecular m
tions in collagen, and fluid flow both in the canalicular-lacun
system and within the nano-pores of the hydroxapatite bone
trix.

In the experimental study reported by Garner et al.@41#, cylin-
drical bone specimens~3mm by 17mm! harvested from the corti-
cal region of a human cadaver’s femur were completely restrai
on their lower surface. The physical bone specimens were s
rated with water, and then subjected to dynamic bending and
sion tests over a wide range of frequencies. Continuous ben
moment versus curvature measurements and continuous to
versus twist angle measurements were recorded and used to
pute total rates of energy dissipation in the bone specimen.
response of the cortical bone was measured both when the
ersian canals~and thus the direction of greatest permeability! were
aligned with the long axis of the cylinder, and also when t
Haversian canals were transverse to the longitudinal axis of
cylinder. Similar experiments were also performed and repor
by Buechner et al.@42# on rectangular prismatic bovine bon
specimens where size effects were investigated.
FEBRUARY 2003, Vol. 125 Õ 31
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Fig. 4 Computed fluid pressure relaxation responses in the model of cortical bone specimens
for both sets of poroelastic properties, and for both longitudinal and transverse orientation of
the Haversian canals. A uniaxial stress of 1 MPa was applied to the bone model. When the
Haversian canals are oriented longitudinally in the prismatic bone specimen, initial fluid pres-
sures are smaller but pressure relaxation takes longer.
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A numerical model~Fig. 3a! of the rectangular prismatic spec
mens was created by discretizing a parallelepiped~6mm by
6.4mm by 41mm! into a mesh of hexahedral trilinear poroelas
finite elements~40 layers of elements with 100 elements p
layer!. In this bone-specimen model, both a longitudinal a
transverse orientation of the Haversian canals were considere
shown in Figs. 3b and 3c. This numerical model was emplo
first to compute the consolidation response of the cortical bon
a step function loading of 1 MPa in order to note the characteri
times required for the fluid pressure to decay. The same m
was subsequently used to compute steady-state dynamic be
responses of poroelastic bone over a wide range of frequencie
the dynamic bone-specimen computations, a rotation was app
to the free end of the prismatic bone specimen at prescribed
quencies, and for each frequency, the steady state response
bone-specimen was computed.

For both material assumptions A and B the consolidation
havior of the rectangular, prismatic specimen described above
computed. The computed volume-averaged pore fluid press
have been plotted versus time with both the longitudinal a
transverse orientations of Haversian canals in the prismatic sp
men ~Fig. 4!. Inertial effects were neglected in these press
relaxation computations, and the uniformly applied surface tr
tion remained constant for the duration of the test. When initia
applied, the surface traction is supported by both the solid
fluid phases within the bone. The behavior of the bone imme
ately after the load is applied represents the undrained, short-
response of the material. When loaded respectively in the lo
tudinal and transverse directions, the undrained pore fluid un
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material assumption A experiences pressures with relative ma
tudes of 4.5% and 22% in relation to the applied axial stress
the bone specimen. Under material assumption B, the peak p
sures under longitudinal and transverse loadings are again, res
tively, about 4.5% and 20% of the applied stress magnitude. W
the load is first applied to the bone specimen, there is a essen
a state of uniform uniaxial stress in the bone model, and the
sociated fluid pressures can be found directly from the linear
roelastic models of Eqs.~13! and~14! and the material propertie
found from unit cell analysis~Tables 1 and 2!. These results make
it clear that uniaxial stress loadings in directions orthogonal to
Haversian canals have the potential to generate larger Have
fluid pressures and stronger load-induced flows.

For the material assumptions invoked in the computatio
models, and for the assumed specimen size, the computed H
sian fluid pressure relaxation times range from approxima
1028 seconds to 1025 seconds. These relaxation times are gen
ally consistent with the relaxation times of order 1026 seconds
estimated by Zhang et al.@27#.

Results of Harmonic Loading Computations. The peak
fluid pressures~Fig. 5! and peak fluid shear stresses~Fig. 6! in the
bone model were computed with each frequency~Fig. 5!. At each
frequency considered, the peak bone bending pres
VB

max@2 1/3 (s̄111s̄221s̄33)# was used to normalize the pea
bone fluid pressure, and the peak fluid shear stress at that
quency. The computed results~Fig. 5! indicate that the ratio of
peak fluid pressures to peak bone pressures start out very s
@O(102721025)# at 1 Hz and increase linearly with frequenc
Transactions of the ASME
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Fig. 5 Computed peak Haversian fluid pressures versus frequency for material assumptions A
and B, and both transverse and longitudinal orientation of the osteonal bone in the prismatic
specimen model. At each frequency, the computed fluid pressures have been normalized by
the peak bone pressure in the corresponding model at that same frequency.
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through approximately 10 kHz. Beyond 100 kHz the ratio of pe
fluid pressures to peak bone pressures are consistent with
would be seen in the fully undrained behavior of cortical bo
While the pressure relaxation results of Fig. 4 indicate that fu
undrained behavior occurs only above 1 MHz, it is postulated h
that breakdown of Poiseuille flow leads to ‘‘undrained’’ behav
at ‘‘lower’’ frequencies. Above 100 kHz the computed bone flu
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pressures, under bending with Haversian canals oriented tr
versely to the long axis of the prismatic specimen, are consiste
larger than fluid pressures under longitudinal orientation of
Haversian canals. Conversely, at lower frequencies, loading of
bone in the direction of the Haversian canals generates la
Haversian fluid pressures, presumably because of the larger
drainage distances and relaxation times in the long direction of
Fig. 6 Computed peak Haversian shear stresses versus frequency for material assumptions A
and B, and both transverse and longitudinal orientation of the osteonal bone in the prismatic
specimen model. At each frequency, the computed fluid shear stresses have been normalized
by the peak bone pressure in the corresponding model at that same frequency.
FEBRUARY 2003, Vol. 125 Õ 33
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Fig. 7 Computed peak bone pressures versus frequency for material assumptions A and B,
and both longitudinal and transverse orientation of osteonal bone within the prismatic speci-
men model. For each model, the computed dynamic peak bone pressures have been normal-
ized by the static peak bone pressure for that same model.
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bone specimens. Peak Haversian fluid shear stresses~Fig. 6! in-
crease linearly in proportion to both the excitation frequency a
the load magnitude up to a frequency of 100 Hz for mate
assumption B, and up to a frequency of 10 kHz for material
sumption A.

In the experimental study of Garner et al.@41#, saturated human
cortical bone specimens described therein were subjected to
ries of harmonic bending and torsional loadings to measure
rates of energy dissipation. In particular, tand values were re-
ported based on the measurements. Both water-saturated s
mens, and moist, non-saturated specimens were tested, with
ferences in their responses being attributed, at least in par
load-induced fluid flow effects in the saturated bone specime
Statistically significant differences in tand characteristics betwee
the moist and saturated bone specimens, if they were appa
could provide indirect confirmation of load-induced fluid flow
bone, which is hard to confirm directly.

The computed tand versus frequency responses of the bo
specimens with material assumptions A and B for both longitu
nal and transverse orientations of the Haversian canals comp
to experimentally measured values reported by Garner et al.@41#
~Fig. 8!. As expected, the computed tand values are substantially
larger at frequencies above 1 kHz than below, with tand values
under transverse orientation of the Haversian canals larger
those under longitudinal orientation. The computed respons
the prismatic bone specimens is essentially quasi-static up to
first resonant frequency at approximately 1 kHz, and beyond t
the bone model experienced numerous different resonance m
as shown by the spikes in normalized bending stresses~Fig. 7!.
The computed values of tand ~Fig. 8! are clearly much smalle
than those measured experimentally by Garner et al.

Discussion of Methods and Results
The model results of the preceding section indicate that b

fluids in the Haversian system flow quite freely at physiologica
meaningful frequencies~1-100 Hz! making it difficult to build up
large load-induced fluid pressures in the Haversian system at
frequencies. Nevertheless, very moderate load-induced pres
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can be generated at physiological frequencies. For example
generate excess Haversian bone fluid pressures of 1 Pa at 1
loading of approximately 10 MPa would be required, while at 1
Hz, a loading of only approximately 0.10 MPa would be require

In the quasi-static range of responses, the modeled peak
shear stresses in the Haversian canals increase linearly with
magnitude of loading applied to the bone, and also linearly w
the frequency of the excitation. Recentin vitro experiments by
Jacobs et al.@26# have shown that chick osteocytes respond
oscillatory fluid shear stresses of 2 Pa, resulting in alteration
intracellular calcium concentrations~possibly related to remodel
ing responses!. These responses are at least consistent with
notion that osteocytes could be sensing cells which then some
communicate the mechanical environment to responding c
~e.g. osteoblasts!. Shear stresses of similar magnitude in the Ha
ersian fluid can be achieved in the proposed bone poroelast
models a number of possible ways by varying both the magnit
and loading of the applied excitation. Using the results and c
stants of proportionality indicated by Fig. 6, shear stresses of 2
could be achieved by applying bending excitation with a pe
bending stress of 10 MPa at a frequency of 1 Hz, a peak ben
stress of 1 MPa at a frequency of 10 Hz, or even a bending st
of.1 MPa at a frequency of 100 Hz.

These model-based observations are premised on the n
that the Haversian canals are devoid of soft tissue and have s
rigid boundaries. The micrographic study by Cooper indicates
these assumptions are not strictly true since soft tissues fill at l
a substantial portion of the lacunae and Haversian canals@30#. To
what extent these tissues would impair fluid flow is unknown. It
worth noting that based onin vitro permeability experiments on
fresh cortical bone reported by Rouhana et al.@43#, fresh bone
specimens had absolute permeabilities of order 10213

210215 m2. However, over many days of water flowing throug
the bone specimens, the permeabilities gradually increased
they reached final values approximately one to two orders of m
nitude larger (10211210213 m2). It is indeed conceivable that th
initial lower permeabilities are indicative of thein vivo perme-
Transactions of the ASME
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Fig. 8 Computed tan d versus frequency for material assumptions A and B, and both longitu-
dinal and transverse orientation of osteonal bone within the prismatic specimen model. The
computed values are compared with experimentally measured tan d by Garner et al. „2000….
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abilities associated with Haversian bone, and that the later pe
abilities are indicative of those that occur only when all of the s
tissues have been washed out of the Haversian canals. On
other hand, when bone specimens are cut by saw for experim
a good deal of the bone architecture in the vicinity of the cut c
be disturbed, and residue from the cutting can possibly clog H
ersian canals, leading to unrealistically low fluid conductiv
measurements until the residue from cutting the bone has b
flushed out.

If we had, in this effort, modeled the Haversian canals as be
partially filled with soft tissues, the frequencies at which peaks
tan d and also peaks in fluid pressure occur could be as muc
two orders of magnitude smaller than computed herein. It is
ther acknowledged that if the model were to account for par
filling of the Haversian canals with soft tissue, the computed tad
values could also be modified significantly.

Osteons tend to spiral about the long axis of bones@44–48#,
although they are far more aligned with the long@46# than trans-
verse axis even in those bones where this feature is prominen
well documented~e.g., the femur!. Furthermore, the notion o
spiraling of osteons is controversial, and some authors have fo
no such effects@49,50#. In any case, such spiraling would no
likely have a major effect because the alignment differen
would be no more than 5-15 degrees. Any resulting changes to
model results would lie between those for the longitudinal a
transverse orientations of the Haversian canals, but closer to
former. Were the effects of spiraling osteons important to ascer
such effects could certainly be modeled at the whole-bone sc

In general, the branches of osteons are aligned closely to
long axis of the bone, and as with the spiraling of osteons, wo
not likely have much effect as a result of orientation alone. Th
would, however, have the tendency to promote what we h
termed transverse ‘‘drainage’’ or flow in the bone.@In fact, this is
the reason for our use of a transverse permeability roughly
tenth that in the longitudinal direction.# Given that branching ap
pears to involve a relatively small~perhaps less than 5-10%! of
the length of the osteon@44#, we suspect the gross effect on stre
gradients and flow would be of that same order.

Since the numerical model presented is mathematically lin
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the magnitude of computed peak fluid pressures and shear str
at a given excitation frequency will always be in proportion to t
magnitude of loading applied to a given specimen model. In F
5 and 6, we have for each frequency normalized both the p
fluid pressure and the peak fluid shear stress in the speci
model by the peak mean normal stress in the model at that
quency. Since many of the loading frequencies considered w
well above the fundamental frequency of the bone-specim
model, the computed responses were highly dynamic in that i
tial forces within the specimen were very significant if not dom
nant. In the highly dynamic range the structural~as opposed to
material! stiffness characteristics of the bone specimen model
strongly frequency dependent and as a result the fluid press
and fluid shear stresses induced in the bone model will dep
upon the mass and stiffness characteristics of the specimen b
considered.

As it is very difficult to measure fluid flow, and fluid stresses
the microscale of small bone specimens undergoing dyna
loading, these quantities are not easily verified experimentally
related experimental work by Garner et al.@41# and Buechner
et al. @42#, the rate of energy dissipation in the bone at differe
frequencies of excitation, as manifested by tand, was measured
In the current computations the first calculated peaks in tand ~Fig.
8! occurring below (f5105 Hz) correspond to peaks in mea
bone stress~Fig. 7! associated with resonance of the bone spe
men. Only two apparent true peaks in tand associated with fluid
flow are seen in the model results of Fig. 8. The first occurs
material assumption A under transverse loading at f570 kHz, and
the second occurs for material assumption B under transv
loading at f5200 kHz.

Since the current work deals only with fluid flow in the Have
sian system, and the associated energy dissipated therein, it i
necessarily surprising or disturbing that the tand values computed
herein are much smaller than those measured in experime
work. As additional mechanisms are included in the bone
roelasticity models, such as fluid flow in the canaliculi, and in t
hydroxapatite matrix pores, it is anticipated that the models w
more closely resemble the experimental observations.
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It is interesting to note that macroscopically, load-induced fl
flow in the Haversian system of cortical bone has only a ne
gible effect in terms of the effective viscoelasticity associated w
pore pressure relaxation effects. However, bone poroelast
models can yield potentially useful information on phenome
occurring within the bone during loading. Here, attention has b
focused on the fluid pressures and shear stresses generated
Haversian system during loading of cortical bone. In a followi
work a hierarchical bone poroelasticity model will be presen
and applied to compute representative fluid pressures, s
stresses, and energy dissipation in the lacunar-canalicular sys

Perhaps the most fundamental hypothesis of this work is
fluid flow and associated shear stresses relate in some way to
adaptation. Alternative explanations include stress-related p
nomena arising from the matrix of bone and non-mechanical p
nomena arising from genetically-based mechanisms or reac
to hormonal~systemic! @51–54#, paracrine@55–59#, or autocrine
@54–56, 59# functions. While not excluding these sorts of mech
nisms, the present work rather assumes based upon conside
theoretical@22–25,61–65#, and experimental@26,57,66–74# work
that fluid flow and associated shear stresses can contribute t
modeling.

Given potential fluid flow mechanisms, the next fundamen
question is at what level do these result in bone adaptation.
presume stress-engendered flow occurs at all levels~e.g., grossly
visible inter-trabecular spaces within the marrow, Haversian s
tems and porosities which may be grossly visible in cut corti
bone, and Haversian, Volkmann, or canalicular systems seen
with light or electronic microscopy!. Then one must ask whethe
these are relevant. We focus here upon the systems in cor
bone, but do not exclude the relevance at any level. In fact,
cutting cones of newly-forming Haversian systems contain os
blasts which might be mechanically sensitive to fluid flow. T
present analysis would provide some predictions of fluid flow
this level, while not excluding sensitivity at other levels~e.g.,
osteocytes embedded in lacunae, or osteocytic processes em
ded in canaliculi!.

We unfortunately have no way of directly studying the mech
nosensitivity of bone cellsin vivo. Therefore, we are left with
comparing our predictions of fluid pressure to that in experime
using isolated cells. We acknowledge isolated cellsin vitro may
respond in vastly differing ways than embedded cellsin vivo.
However, cell culture in general has shown in many sorts of st
ies ~i.e., responses to pharmaceutical and genetic manipulatio! to
reflect biological responses subsequently shownin vivo, and they
have been frequently used to explore mechanisms of mec
otransduction. Thus, while not clearly confirming the utility of th
model, they are at least consistent with our findings.

Our approach, indeed almost any mechanical model, implic
excludes biological factors such as systemic or genetic effe
Without a quantitative knowledge~or assumption! of these inter-
actions, we would not know how to include them. Eliminatin
such factors in modeling clearly has the disadvantage of exclu
potentially critical factors, but has the advantage of studying o
mechanical effects and ascertaining their potential role. If e
mates of fluid flow and shear stresses are either far too low or
high to result in physiological effects, they may be excluded fr
consideration.

Conclusions
In this work, unit cell analysis has been applied to relate

morphology of Haversian bone to its effective anisotropic p
roelastic properties. The anisotropic bone poroelasticity mo
was then exercised on a cortical bone specimen in the frequ
range of 1 Hz to 1 MHz. Drag forces between the Haversian fl
and the bone matrix were quantified in the bone poroelasti
models and then related to fluid shear stresses. This analysis
gests that fluid shear stresses in the Haversian system on the
of 1 Pa are easily achievable in the physiological range~1–100
36 Õ Vol. 125, FEBRUARY 2003
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Hz! with bone stresses in the range of (1072105 Pa). If it could
be verified that osteocytes do indeed respond to oscillatory fl
shear stresses of this magnitudein vivo then the hypothesis tha
fluid shear stresses on bone cells are an important mech
transduction mechanism in the phenomenon of bone adapta
would be strengthened.
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