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A Q4/Q4 continuum structural topology optimization
implementation

S.F. Rahmatalla and C.C. Swan

Abstract A node-based design variable implementation
for continuum structural topology optimization in a fi-
nite element framework is presented and its properties
are explored in the context of solving a number of dif-
ferent design examples. Since the implementation ensures
C0continuity of design variables, it is immune to element-
wise checkerboarding instabilities that are a concern with
element-based design variables. Nevertheless, in a subset
of design examples considered, especially those involving
compliance minimization with coarse meshes, the imple-
mentation is found to introduce a new phenomenon that
takes the form of “layering” or “islanding” in the material
layout design. In the examples studied, this phenomenon
disappears with mesh refinement or the enforcement of
sufficiently restrictive design perimeter constraints, the
latter sometimes being necessary in design problems in-
volving bending to ensure convergence with mesh refine-
ment. Based on its demonstrated performance charac-
teristics, the authors conclude that the proposed node-
based implementation is viable for continued usage in
continuum topology optimization.

Key words stability, checkerboarding, design conver-
gence

1
Introduction

Continuum structural topology optimization is an in-
creasingly powerful design tool that can be used to ob-
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tain optimal arrangements of structural materials to com-
prise mechanical systems. Since their introduction well
over a decade ago (Bendsøe and Kikuchi 1988) continuum
topology optimization methods have been successfully
used in numerous applications, including the design of
structures for minimal elastic and inelastic compliance,
the design of linear elastic structures for tailored vi-
brational eigenvalues, and the design of systems with
compliant mechanisms (for examples: Swan and Kosaka
1997; Pedersen 2000; Bruns and Tortorelli 1998; Buhl
et al. 2000; Pedersen et al. 2001; and the numerous works
cited in these references). In spite of these many appli-
cations and advances, numerical instabilities involving
checkerboarding and mesh-dependent design solutions
have persisted over a considerable period. Accordingly,
many works, as cited in the review by Eschenauer and
Olhoff (2001), have been published to understand better
and eliminate these instabilities.
In implementing continuum structural topology opti-

mization formulations, there is a good deal of flexibility in
selecting interpolation function spaces for displacement
solution fields and design variable fields. Eight of the feas-
ible possibilities for the design of mechanical systems in
two dimensions using quadrilateral finite elements are
shown in Fig. 1. Of these eight possibilities, the Q4/U im-
plementation appears most widely used to date with the
nodal displacements interpolated by bilinear shape func-
tions, and the design variables uniform on each element
domain. One of the problems with the Q4/U implementa-
tion is that it does not ensure C0 continuity of the design
variable field. A related problem that occurs frequently
in the application of Q4/U implementations is layout dis-
tributions that oscillate from solid to void across element
boundaries, forming what resemble “checkerboarding” or
“chessboarding” patterns.
Diaz and Sigmund (1995) discussed the reasons for

the formation of checkerboard patterns in Q4/U imple-
mentations and demonstrated that solid and void mate-
rials arranged in element-wise checkerboard patterns on
meshes of uniform bilinear finite elements appear artifi-
cially stiff. Hence, in material layout design problems for
which the objective is to achievematerial arrangements of
minimal structural compliance with respect to specified
loading conditions, “checkerboarding” material arrange-
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Fig. 1 Selected option for element-wise interpolation of dis-
placement fields and design variable fields

ments in the Q4/U implementation are quite natural.
Later, Sigmund and Petersson (1998) surveyed many of
the numerical instability problems encountered in con-
tinuum topology optimization as well as some of the com-
mon techniques for realizing non-checkerboarding mate-
rial layout designs, including the usage of higher order
finite elements together with element-wise uniform design
variables (for example the Q8/U and Q9/U implementa-
tions in Fig. 1); the imposition of perimeter constraints;
and spatial filtering of design variables. Among these op-
tions, various filtering techniques such those proposed in
(Sigmund and Petersson 1998; Swan and Kosaka 1997)
are widely used. However, spatial filtering of design vari-
ables is heuristic, forcing the designer to select a filter
strength or filtering length scale for each design problem.
Since there can be an optimal design associated with each
filter strength, the design obtained will strongly depend
on the filter characteristics.
Jog and Haber (1996) performed an extensive and

noteworthy study on the stability of finite element so-
lutions of distributed parameter topology optimization
problems under numerous combinations of interpolation
function spaces for design variables and displacement so-
lutions. Their analysis and stability criterion found both
the Q4/U and Q4/Q4 implementations to be unstable,
whereas it found the Q9/U (quadrilateral nine-node bi-
quadratic displacement solution interpolation with piece-
wise uniform design variable interpolation) and Q8/U
(quadrilateral eight-node biquadratic serendipity dis-
placement solution interpolation) implementations to be
stable. In the same article, Jog and Haber mentioned,
however, that checkerboarding solutions had appeared in
limited cases even with the Q9/U and Q8/U implemen-
tations. This was confirmed in subsequent observations
reported by Sigmund and Petersson (1998) and Swan
et al. (1998) who also found mild checkerboarding to
occur with the Q8/U and Q9/U implementations.
Poulsen (2002) presented a noteworthy study that

considered a continuum topology implementation quite
different from any of those shown in Fig. 1. In particular,

in a bilinear finite element framework (Q4 interpolation
of displacements), it addressed the checkerboarding prob-
lem using wavelet basis functions to interpolate the de-
sign field. The length scales of the wavelet basis functions
were not directly coupled to the finite element mesh used
for analysis. By imposing certain restrictions and dealing
with overlapping bases, it was shown that the method can
achieve designs that are nearly free of checkerboarding.
Still another recognized strategy for eliminating

checkerboarding instabilities in material layout designs
is through the imposition of constraints on the design
solution that limit the “fineness” of the design. For ex-
ample, enforcement of sufficiently restrictive perimeter
constraints (Haber et al. 1996) can be used both to pre-
clude checkerboarding designs while also achieving de-
signs that are convergentwith mesh refinement. In a simi-
lar fashion, Fujii and Kikuchi (2000) introduced a gravity
control function that they used to augment the struc-
tural compliance function. By maximizing the gravity
control function, they demonstrated that checkerboards
and intermediate densities are eliminated. While both
perimeter and gravity-control methods are indeed effect-
ive, they require the designer to choose control values
(perimeter constraint value and/or the weighting factor
for the gravity control function) that strongly affect the
nature of the design that will be obtained.
From this brief review it is evident that, even at

this date, continuum topology optimization implemen-
tations that are immune to checkerboarding instabilities
are still in demand. The intent of this article is to re-
examine the Q4/Q4 implementation, as it is the lowest
order implementation based on quadrilateral elements
that would appear to preclude the possibility of element-
wise checkerboarding design solutions by virtue of the C0

continuity of the design variable interpolation functions.
Although the previously cited analysis of Jog and Haber
(1996) indicated the Q4/Q4 implementation to be un-
stable, the nature of the potential instabilities was not
elucidated therein. The limited goal of this note is to test
the Q4/Q4 implementation on a reasonably broad set
of continuum topology optimization problems to deter-
mine the conditions under which irregularities or insta-
bilities of the material layout designs occur, and should
they occur, the nature of the instabilities. Although at-
tention is confined here to design examples in two spatial
dimensions, the natural extension of the Q4/Q4 imple-
mentation to three dimensions would be H8/H8 imple-
mentations in which both the displacement field and de-
sign variables are interpolated with trilinear hexahedral
basis functions.
In the remainder of this note, continuum topology op-

timization of structures with a Q4/Q4 implementation
is briefly explored on a number of problems involving
compliance minimization of the MBB beam problem for
a range of mesh resolutions; the canyon bridge problem
for both compliance minimization and buckling stability
maximization; and the design of a sparse structure for
maximum stability. A summary and discussion of the per-
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formance characteristics observed are then presented in
the final section.

2
Demonstrative examples

The performance of the proposed node-based (Q4/Q4)
design implementation is tested here on a number of prob-
lems that have previously been used as test problems for
continuum topology optimization. In all examples, the
optimization solution algorithms employed are variations
of sequential linear programming (SLP) with a default LP
sub-problemmove limit of 0.05. A so-called “density” for-
mulation is employed together with a power-law mixing
rule with an exponent of p = 4 (Bendsøe 1989). Unless
specifically stated otherwise, the solid structural material
in all design cases considered is isotropic with a Young’s
modulus of 307GPa, a shear modulus of 118GPa, and
a mass density of 1700 kgm−3. Both the stiffness and
mass density characteristics of the voidmaterial are taken
to be six orders of magnitude smaller than those of the
solid material.

Fig. 2 The MBB beam problem: (a) the design domain and the boundary conditions with a structural aspect ratio of 6×1;
(b)–(d) the resulting designs in which mesh refinement through the thickness of the beam is progressively increased; (e)–(g) de-
signs in which the mesh is uniformly refined in both directions; and (h)–(j) designs with uniform mesh refinement and a perimeter
constraint enforced

2.1
The MBB beam problem

In the examples that follow, variations of the so-called
MBB beam compliance minimization problem are solved
with a material usage constraint 50% that of the enve-
lope structural volume. The problem is solved at a num-
ber of different mesh resolutions, both with and without
perimeter constraints imposed. These examples were se-
lected because they are representative of those in which
“checkerboarding” material layout designs have been ob-
served with Q4/U implementations.
A simply supported structural domain in which the

structural material can be placed and to which a central
point load is applied (Fig. 2a) has a length-to-height ratio
of 6 : 1. The structural domain is first coarsely meshed
with 60 by 10 square bilinear continuum elements, and
the compliance minimization problem is solved with the
Q4/Q4 implementation, resulting in the design shown in
Fig. 2b. This material layout solution is significant in that
it shows both a “layering” and “islanding” of black and
white regions in the interior domain of the beam, which
is quite difficult to interpret from a design perspective.
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The same finite element model for the beam was then
progressively refined only in the vertical (layering) di-
rection, with the respective solutions shown in Fig. 2c
and d featuring progressivelymoremitigated layering and
islanding.
As an alternative to selective refinement only in the

vertical direction, the finite element model of the 6 by
1 structural domain was also refined uniformly in both
directions to finer and finer meshes. The resulting lay-
out solutions are shown in Fig. 2e–g. While these uni-
formly refined meshes also show layout solutions with
increasingly mitigated layering/islanding, they also fea-
ture non-convergent grillage type design solutions. To
ensure convergence of the material layout solution with
mesh refinement, the compliance minimization problem
was solved yet again with uniformly and progressively
refined meshes and an imposed perimeter constraint of
p≤ 2(l+h), where l is the width of the beam and h
is its vertical thickness or height. The layout solutions
obtained with coarse and progressively finer meshes are
shown in Figs. 2h–j. None of these designs feature any lay-
ering, and the design achieved with the coarse mesh ap-
pears virtually identical to that achieved with the much
finer meshes. This is facilitated in the graphical display by
capturing the spatial variation of design variables in each
element instead of displaying each element with a uniform
shade of gray corresponding to element-averaged design
variable values. In this way, the Q4/Q4 implementation
permits the edges of structural members in the layout de-
sign to slice through individual finite elements.

2.2
The canyon bridge problem

Grillage designs feature networks of slender structural
members that continue to multiply with increasing mesh

Fig. 3 Canyon bridge design problem: (a) the design domain and the boundary conditions with a uniformly loaded traction of
10 kPa; (b) the resulting material layout obtained by minimizing the elastic structural compliance; and (c) the buckling mode of
this design; (d) the material layout obtained by maximizing the minimum critical buckling load with (e) the buckling mode which
is localized and thus not visible; and (f) an expanded view of the layout design shown in (b) to show “layering” and “islanding”

refinement. Since they are mesh-dependent and non-
convergent with mesh refinement, they are generally per-
ceived as undesirable in continuum structural topology
optimization. It is well established that such designs can
be eliminated entirely by using spatial filtering of design
variables and/or enforcing design perimeter constraints.
On the other hand, in using continuum topology opti-
mization to obtain concept designs of large-scale struc-
tures such as the bridge of this example, potentially
important details can be lost by the application of these
techniques. Since the Q4/Q4 implementation need not be
used with methods that preclude possible checkerboard-
ing, it can potentially capture some of these secondary
details.
Here, optimization problems are solved to find opti-

mal two-dimensional forms of a bridge to carry structural
loads across a span of 1000 meters. A design traffic load
of 10 kPa is applied uniformly to the deck level of the
bridge. The design domain that the bridge superstruc-
ture can potentially occupy is shown in Fig. 3a, and the
structural material usage constraint is to be less than or
equal to 12.5% of the bridge’s envelope volume. In the
first example, the design problem is solved to minimize
structural compliance under the design traffic loading,
and Fig. 3b shows the resulting material layout obtained
with the Q4/Q4 implementation. Even though the sec-
ondary details of the material layout feature some gril-
lage, the overall material layout is quite interpretable,
and even the grillage members are suggestive of a sys-
tem of tension members (cables) above the deck level and
compression members beneath the deck.
The second optimization problem is solved to find

the material layout that maximizes the minimum buck-
ling eigenvalue of the structure. Important supporting
details pertaining to both the formulation and solution
of such stability optimization problems can be found in
(Neves et al. 1995; Rahmatalla and Swan 2003a,b). A re-
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sulting optimal layout design for linearized buckling sta-
bility is shown in Fig. 3d. This material layout design
is interpretable, avoiding buckling instabilities by using
longer tension members and shorter, supported compres-
sion members.

2.3
The problem of circle-domain design for stability

In this example, a design load is applied to a circular de-
sign domain with fixed perimeter boundaries (Fig. 4a).
The optimization problem is solved by placing a limited
amount of structural material in the design domain in
a way that achieves optimal structural performance. In
Rahmatalla and Swan (2003b), a number of alterna-
tive problem formulations for obtaining sparse designs of
optimum stability were presented and compared. Here,
the intent is merely to demonstrate the characteristics
of the Q4/Q4 topology implementation on this class of
problems.
The first design problem solved is to minimize the gen-

eralized compliance of the structure up to the point of
first instability, subject to a material usage constraint
that is 2.5% of the envelope volume of the structure.
The design solution obtained for this problem (Fig. 4b
and c) employs both tension and compression members,
and the material distribution is very clear, discrete, and
free of any layering or islanding. The second design so-
lution (Fig. 4d and e) is one obtained by maximizing the
nonlinear buckling load magnitude, under a 2.5% mate-
rial usage constraint. In this particular implementation,
the design solution uses two struts that are primarily in
tension. It too is very sharp, clear, and discrete, with no
layering in the layout solution.

Fig. 4 Topological design solutions for the “circle-problem”:
(a) the design domain Ω and applied load (all nodes on the
perimeter of Ω are fully restrained); (b) the design solution
obtained by minimizing the elastic compliance up to a point of
instability; (c) the deformed shape of design; and (d) the de-
sign solution obtained by maximizing the nonlinear buckling
load, with (e) the deformed shape of the solution

3
Discussion and conclusions

The performance characteristics of a Q4/Q4 continuum
topology optimization implementation based on nodal
design variables have been explored on a number of test
problems. The performance of the implementation on the
test problems indicates that it is immune to the element-
wise checkerboarding phenomenon, as expected, since it
forces C0 continuity of the design variable field. Accord-
ingly, the method does not require any assumption of
filtering strength or length scales to preclude checker-
boarding instabilities.
Although the present implementation is not suscep-

tible to checkerboarding instabilities, it has been found
in a limited number of instances to feature what might
be an instability phenomenon characterized by “layer-
ing” or “islanding” of the design solutions. “Layering”
and/or “islanding” designs appear to occur in cases
where the mesh is marginally to insufficiently refined
to capture the local material arrangements. Results of
numerical experiments on the MBB beam examples ap-
pear to indicate, however, that, as the structural an-
alysis mesh is progressively refined, the “layering” is
strongly mitigated to the point of vanishing with suf-
ficient refinement. Nevertheless, the numerical stability
characteristics of “layering” or “islanding” in material
layouts with the Q4/Q4 implementation warrant addi-
tional investigation.
For some classes of examples, especially those for the

design of optimum buckling stability, the material lay-
out designs show no propensity toward non-convergent
grillage solutions. In certain classes of problems, how-
ever, especially those involving material layout opti-
mization to minimize the compliance of structures un-
dergoing flexure, the material layout design may not
converge with mesh refinement. This non-convergence
of designs with mesh refinement can occur with any
of the implementations shown in Fig. 1. Accordingly,
when employed on such problems, the Q4/Q4 imple-
mentation, like most all others, must be coupled with
a method such as perimeter control that ensures conver-
gence. When the Q4/Q4 implementation was used with
meaningful perimeter constraints on MBB beam test
examples to ensure design convergence, very sharp, inter-
pretable designs were obtained even at fairly coarse levels
of mesh resolution. That sharp interpretable designs can
be achieved even at coarse mesh resolutions with the
Q4/Q4 implementation is facilitated by its ability to re-
solve material interfaces that slice through individual
finite elements.
Finally, although the proposed Q4/Q4 implemen-

tation has been tested herein using a volume-fraction
(or density) continuum topology formulation, there is
no reason that it cannot also be used successfully with
homogenization-based continuum topology optimization
methods, in which case microstructural design variables
are spatially interpolated using nodal basis functions.
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